Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of the basic mechanical properties determined in the static tensile test, impact un-notched Charpy test and hardness of austenitic stainless steel type 316L produced by two techniques: classical pressing and sintering in a vacuum with rapid cooling and selective laser melting (SLM). In this work fracture surface of Charpy test, samples were studied. The results indicate that application of selective laser melting (SLM) makes it possible to double increase the strength properties of components manufactured from austenitic stainless steel type 316L compared to sintering in a vacuum. Resulted in mechanical properties strongly depend on porosity characteristic and the presence of superficial oxides in the case of sintered steel and the character of observed microstructural defects deriving from non-fully melted powder particles and the formation of voids between subsequently melted pool tracks during the SLM.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
2125--2131
Opis fizyczny
Bibliogr. 18 poz., rys., tab.,
Twórcy
autor
- Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, 18 A Konarskiego Str., Gliwice 44-100, Poland
Bibliografia
- [1] I. Tolosa, F. Garciandia, F. Zubiri et al., Int. J. Adv. Manuf. Technol. 51, 639-647 (2010).
- [2] I. Yadroitsev, I. Yadroitsava, Virtual Phys. Prototyp. 10 (2), 67-76 (2015).
- [3] M. Król, M. Kujawa, L.A. Dobrzański, T. Tański, Arch. Mater. Sci. Eng. 67 (2), 84-92 (2014).
- [4] Z. Brytan, M. Bonek, L.A. Dobrzański, D. Ugues, M.A. Grande, Mat. Sci. Forum, 654-656, 2511-2514 (2010).
- [5] A. Mertens, S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire, J. Lecomte-Beckers, Powder Metall. 57 (3), 184-189 (2014).
- [6] A. Mertens, S. Reginster, Q. Contrepois, T. Dormal, O. Lemaire, J. Lecomte-Beckers, Mat. Sci. Forum, 783-786, 898-903 (2014).
- [7] E. Yasa, J.-P. Kruth, Procedia Eng. 19, 389-395 (2011).
- [8] A. Mertens, S. Reginster, Q. Contrepois et al., Mat. Sci. Forum, 783-786, 898-903 (2014).
- [9] R. Bidulsky, E. Hryha, J. Bidulska, High Temp. Mater. Proc. 35 (9), 865-870 (2016).
- [10] E. Klar, P. Samal, Powder Metallurgy Stainless Steels: Processing, Microstructures and Properties, ASM International, Ohio, USA, 2007.
- [11] C. Bossi, G.L. Garagnani, M. Rosso, Powder Metallurgy Progress 2, 2, 90-97 (2002).
- [12] Y. Zhong, L. Liu, S. Wikman, D. Cui, Z. Shen, J. Nucl. Mater. 470, 170-178, (2016).
- [13] L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, E. Jonda, M. Bonek, A. Drygała, Structures, properties and development trends of laser surface treated hot-work steels, light metal alloys and polycrystalline silicon, in: J. Lawrence, D. Waugh (eds.), Laser Surface Engineering. Processes and Applications, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Ltd, Amsterdam, 2015.
- [14] M. Staszuk, D. Pakuła, T. Tański, Mater. Tehnol. 50/5, 755-759 (2016).
- [15] M. Król, T. Tański, P. Snopiński, B. Tomiczek, J. Therm. Anal. Calorim. 127, 299-308, (2017). DOI:10.1007/s10973-016-5845-4.
- [16] M. Król, T. Tański, W. Sitek, IOP Conf. Ser-Mat. Sci. (MOD-TECH2015) 95, (2015). DOI:10.1088/1757-899X/95/1/012006.
- [17]. P. Snopiński, T. Tański, K. Labisz, S. Rusz, P. Jonsta, M. Król, Int. J. Mater. Res. 107 (7), 637-645, (2016). DOI: 10.3139/146.111383.
- [18]. M. Król, P. Snopiński, B. Tomiczek, T. Tański, W. Pakieła, W. Sitek, P. Est. Acad. Sci. 65 (2), 107-116, (2016). DOI: 10.3176/proc.2016.2.07.
Uwagi
EN
Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, 18 A Konarskiego Str., Gliwice 44-100, Poland
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df8b1811-4e3f-44ce-8bd9-904cb8bb9c7e