PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fotokataliza w oczyszczaniu i dezynfekcji wody. Część II, Usuwanie metali i naturalnych substancji organicznych

Autorzy
Identyfikatory
Warianty tytułu
EN
Photocatalysis in the treatment and disinfection of water. Part II, Removal of metals and natural organic matter
Języki publikacji
PL
Abstrakty
PL
Proces fotokatalizy należy do wysoko zaawansowanych technik utleniania o możliwościach usuwania trwałych związków organicznych i mikroorganizmów z wody. Jest to technologia o dużym potencjale, niskich kosztach, przyjazna dla środowiska oraz o cechach zrównoważonego rozwoju i „zerowym” odprowadzaniu odpadów w przemysłowych systemach wodno-ściekowych. W pracy przedstawiono możliwości zastosowania fotokatalizy w procesie usuwania związków nieorganicznych, przede wszystkim metali oraz naturalnych substancji organicznych z wód naturalnych i ścieków.
EN
Photo-catalysis process belongs to an advanced oxidation technology for the removal of persistent organic compounds and microorganisms from water. It is the technology with a great potential, a low-cost, environmental friendly and sustainable treatment technology to align with the “zero” waste scheme in the water/ wastewater industry. This paper reviews ability of application of the photo-catalysis process for the removal of inorganic compounds, first of all metals and natural organic matter from natural water and wastewaters.
Czasopismo
Rocznik
Strony
18--30
Opis fizyczny
Bibliogr. 99 poz., tab.
Twórcy
autor
  • Instytut Podstaw Inżynierii Środowiska PAN w Zabrzu
autor
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki
Bibliografia
  • [1]Al-Rasheed R.A., Water treatment by heterogeous photocatalysis. An Overview, Presented at 4th SWCC Acquired Experience Sym- posium held in Jeddah, Arabia Saudyjska, 2005.
  • [2]Bodzek M., Rajca M., Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds, Ecological Chemistry and Engineering (S), 19 (2012) 489-512.
  • [3]Chong M.N., Jin B., Chow C.W.K., Saint C., Recent developments in photocatalytic water treatment technology: A review, Water Research, 44 (2010) 2997 - 3027.
  • [4]Matilainen A., Sillanpaa M., Removal of natural organic matter from drinking water by advanced oxidation processes, Chemo- sphere, 80 (2010) 351-365.
  • [5]Likodimos V., Dionysiou D.D., CLEAN WATER: water detoxification using innovative photocatalysts, Rev. Environ. Sci. Biotech- nol., 9 (2010) 87-94.
  • [6]Benotti M.J., Stanford B.D., Wert E.C., Snyder S.A., Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water, Water Research, 43 (2009) 1513 - 1522.
  • [7]China S.S., Lima T.M., Chiang K., Fane A.G., Hybrid low-pressure submerged membrane photoreactor for the removal of bisphenol A, Desalination, 202 (2007) 253-261.
  • [8]Mozia S., Tomaszewska M., Morawski A.W., A new photocatalytic membrane reactor (PMR) for removal of azo-dye Acid Red 18 from water, Applied Catalysis B: Environmental, 59 (2005) 131-137.
  • [9]Serpone N., Borgarello E., Pelizzetti, E. Photoreduction and photodegradation of inorganic pollutants: II. Selective reduction and recovery of Au, Pt, Pd, Rh, Hg and Pb, w: M. Schiavello (Ed.), Photocatalysis and Environment, Trends and Applications, Kluwer Academic Publishers, Dordretch/Boston/ London, (1988) 527-565-
  • [10]Bodzek M., Usuwanie metali ze środowiska wodnego za pomocą metod membranowych - stan wiedzy, w: „Polska Inżynieria Śro¬dowiska Prace” (red.: Dudzińska M., Pawłowski A.), Monografie Komitetu Inżynierii Środowiska PAN, 100(2) (2012) 47-82.
  • [11]Bodzek M., Konieczny K., Usuwanie zanieczyszczeń nieorganicznych ze środowiska wodnego metodami membranowymi. Wy¬dawnictwo Seidel-Przywecki, Warszawa, 2011.
  • [12]Nawrocki J., Uzdatnianie wody. Procesy chemiczne i biologiczne, Wydawnictwo Naukowe PWN, Warszawa, 2010.
  • [13]Nguyen N.H.V., Reduction of Cadmium and Selenium Ions and the Deposition of Cadmium Selenide, A thesis for the degree of Doctor of Philosophy, School of Chemical Engineering and Industrial Chemistry, The University of New South Wales, Australia, 2005.
  • [14]Litter M. I., Review: Heterogeneous photocatalysis - transition metal ions in photocatalytic systems, Applied Catalysis B: Envi¬ronmental, 23 (1999) 89-114.
  • [15]Chen D., Ray A. K., Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science, 56 (2001) 1561-1570.
  • [16]Nguyen N.H.V., Amal R., Beydoun D., Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using Ti02 semiconductor as photocatalyst, Chemical Engineering Science, 58 (2003) 4429-4439.
  • [17]Chenthamarakshan C. R., Rajeshwar K., Photocatalytic reduction of divalent zinc and cadmium ions in aqueous Ti02 suspensions: An interfacial induced adsorption-reduction pathway mediated by formate ions. Electrochemistry Communications, 2 (2000) 527-530.
  • [18]Fujishima A., Rao T.N., Tryk D.A., Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemi¬stry Reviews, 1, (2000) 1-21.
  • [19]Herrmann J. M., Disdier J., Pichat P., Photocatalytic deposition of silver over powder titania: Consequence for recovery of silver, Journal of Catalysis, 113 (1988)72-81.
  • [20]Hermann J.M., Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of tants, Catalysis Today, 53 (1999) 115-129.
  • [21]Tanaka K., Harada K., Murata S., Photocatalytic tal ions onto Ti02 powder. Solar Energy. 36 (19SĆ -5MB.
  • [22]Lau L. D., Rodriguez R., Henery S.. Manuel D_ S ' Photoreduction of mercuric salt solutions at high :£ mental Science and Technology, 32 (1998) 670.
  • [23]Hilmi A., Luong J. H. T., Nguyen, A.-L., Utilisation oft7 sited on glass plates for removal of metals from aqoaaK Chemosphere, 38 (1999) 865-874.
  • [24]Tennakone K., Wijayantha K.G.U., Heavy metal aqueous medium with an immobilized Ti02 ph< a solid sacrificial agent, Journal of Photochemistry sac logy A: Chemistry, 113 (1998) 89-92.
  • [25]Davis A. P., Green D. L., Photocatalytic oxidation of TA with titanium dioxide, Environmental Science arc gy, 33 (1999) 609-617.
  • [26]Morishita S., Suzuki K., Photoelectrochemical deposition of nickel onto Ti02 particles. Formation of nickel patterns without resists, Bulletin of Chemical Society of Japan, 67 (1994) 843-846.
  • [27]Forouzan F., Richards T. C., Bard A. J., Photoinduced reaction at Ti02 particles. Photodeposition from Ni(II) solutions with oxalate, Journal of Physical Chemistry, 100 (1996) 18123-18127.
  • [28]Lin W. Y., Rajeshwar K., Photocatalytic removal of nickel from solutions using ultraviolet - irradiated Ti02, Journal of Electro¬chemical Society, 144 (1997) 2751-2756.
  • [29]Nguyen N.H.V., Amal R., Beydoun D., Photocatalytic reduction of selenium ions using different Ti02 photocatalysts, Chemical Engineering Science, 60 (2005) 5759 - 5769.
  • [30]Tan T.T.Y., Beydoun D., Amal R., Effects of organic hole scaven¬gers on the photocatalytic reduction of selenium anions, Journal of Photochemistry and Photobiology A: Chemistry, 159 (2003) 273-280.
  • [31]Michael R.H., Scot T.M., Wonyong C., Detlef W.B., Environmental application of semicondutor photocatalysis, Chemical Reviews, 95 (1995) 69-96.
  • [32]Mills, A., Belghazi, A., Rodman, D., Bromate removal from drinking water by semiconductor photocatalysis, Water Research, 30 (1996) 973-1978.
  • [33]Bhatkhande D.S., Pangarkar V.G., Beenackers A.A.C.M., Photocatalytic degradation for environmental applications - a review, Journal of Chemical Technology and Biotechnology 77 (2001) 102-116.
  • [34]Bodzek M., Konieczny K., Wykorzystanie technik membranowych w uzdatnianiu wody do picia, cz.II - Usuwanie związków orga¬nicznych, Technologia Wody, 2(04) (2010) 15-31.
  • [35]Kabsch-Korbutowicz M., Zaawansowane metody usuwania na¬turalnych substancji organicznych z wody. Monografie Komitetu Inżynierii Środowiska PAN, 92 (2012).
  • [36]Fukushima M., Tatsumi K., Morimoto K., Influence of iron(III) and humic acid on the photodegradation of pentachlorophenol, Environmental Toxicology and Chemistry, 19 (2000) 1711-1716.
  • [37]Motheo A. J., Pinhedo L., Electrochemical degradation of humic acid, Science of The Total Environment, 256 (2000) 67-76.
  • [38]Nikolaou A.D., Lekkas T.D., The role of natural organic matter during formation of chlorination by-products: A review, Acta Hy- drochimica Et Hydrobiologica, 29 (2001) 63-77.
  • [39]Bodzek M., Przegląd możliwości wykorzystania technik membranowych w usuwaniu mikroorganizmów i zanieczyszczeń organicz¬nych ze środowiska wodnego, Inżynieria i Ochrona Środowiska, 16 (2013) 5-37.
  • [40]Xu X., Zou H., Zhang J., Formation of strong mutagen [3-chlo- ro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone] MX by chlorination of fractions of lake water, Water Research, 31 (1997) 1021-1026.
  • [41]Pirkanniemi K., Sillanpaa M., Heterogeneous water phase cataly¬sis as an environmental application: a review, Chemosphere, 48 (2002) 1047-1060.
  • [42]Bekbolet M., Ozkosemen G., A preliminary investigation on the photocatalytic degradation of a model humic acid, Water Science and Technology, 33 (1996) 189-194.
  • [43]Minero C., Pelizzetti E., Sega M., Friberg S.E., Sjoblom J., The role of humic substances in the photocatalytic degradation of water contaminants, Journal of Dispersion Science and Technology, 20 (1999) 643-661.
  • [44]Eggins B.R., Palmer F.L., Byrne J.A., Photocatalytic treatment of humic substances in drinking water, Water Research, 31 (1997) 1223-1226.
  • [45]Hand D.W., Perram D.L., Crittenden J.C., Destruction of DBP precursors with catalytic oxidation. J. Am. Water Works Assess., 87(6) (1995) 84-96. ^
  • [46]Gerrity D., Mayer B., Ryu H., Crittenden J., Abbaszadegan, M., A comparison of pilot-scale photocatalysis and enhanced coagula¬tion for disinfection byproduct mitigation Water Res., 43, (2009) 1597-1610.
  • [47]Wiszniowski J., Robert D., Surmacz-Gorska J., Miksch K., Weber J.-V., Photocatalytic decomposition of humic acids on Ti02 part I: discussion of adsorption and mechanism, J. Photochem. Photo- biol. A, 152 (2002) 267-273.
  • [48]Liu S., Lim M., Fabris R., Chow C., Chiang K., Drikas M., Amal R., Removal of humic acid using Ti02 photocatalytic process - frac¬tionation and molecular weight characterisation studies, Chemo- sphere, 72 (2008) 263-271.
  • [49]Huang X., Leal M., Li Q., Degradation of natural organic matter by TiO, photocatalytic oxidation and its effect on fouling of low-pres- sure membranes, Water Res., 42 (2008) 1142-1150.
  • [50]Zhang P., Jian L., Ozone-enhanced photocatalytic degradation of natural organic matter in water, Water Sci. Technol., Water Supply, 6(3) (2006) 53-61.
  • [51]Zhang T., Ma J., Lu J., Chen Z., Li C., Jiang J., Catalytic ozonation with metal oxides: an option to control THM formation potential, Water Sci. Technol., Water Supply 6(3) (2006) 63-70.
  • [52]Mozia S., Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review, Separation and Purification Technology, 73 (2010) 71-91.
  • [53]Choi H., Stathatos E., Dionysiou D.D., Photocatalytic Ti02 films and membranes for the development of efficient wastewater treat¬ment and reuse systems, Desalination, 202 (2007) 199-206.
  • [54]Chen X., Mao S.S., Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107(7) (2007) 2891-2959.
  • [55]Zhang X., Pan J.H., Du A.J., Fu W., Sun D. D., Lecki J.O., Combi¬nation of one-dimensional Ti02 nanowire photocatalytic oxida¬tion with microfiltration for water treatment, Water Research, 43, (2009) 1179 -1186.
  • [56]Quan X., Yang S., Ruan X., Zhao H., Preparation of titania nanotubes and their environmental applications as electrode, Environ. Sci. Technol., 39(10) (2005) 3770-3775-
  • [57]Nakata K., Fujishima A., Ti02 photocatalysis: Design and applications, J.Photochemistry and Photobiology C: Photochemistry Reviews, 13 (2012) 169-189.
  • [58]Yuan Z.-Y., Su B.-L., Titanium oxide nanotubes, nanofibers and nanowires, Colloids Surf., A, 241(1-3) (2004) 173-183.
  • [59]Zhang X., Pan J. H., Fu W., Du A. J., Sun D. D., Ti02 nanotube photocatalytic oxidation for water treatment, Water Science & Technology: Water Supply, 9(1) (2009) 45-49.
  • [60]Xu S., Zhang X., Ng J., Sun D.D., Preparation and application of Ti02/Al203 microspherical photocatalyst for water treatment, Water Science & Technology: Water Supply, 9(1) (2009) 39-44.
  • [61]Sohn J. R., Lim J. S., Catalytic activities of Al203-promoted NiS04/ Ti02 for acid catalysis, Catal. Lett., 108 (2006) 1-2.
  • [62]Gumy A., Rincon A.G., Hajdu R., Pulgarin C., Solar photocatalysis for detoxification and disinfection of water: different types of suspended and fixed Ti02 catalysts study, Sol. Energy, 80 (2006) 1376-1381.
  • [63]Chang P.-Y., Hsin C.-H., Doong R., Characterization and photocatalytic activity of vanadium-doped titanium dioxide nanocatalyst, Water Sci. Technol., 59(3) (2009) 523-530.
  • [64]Vilhunen S., Bosund M., Kààriàinen M.-L., Cameron D., Sillanpàà M., Atomic layer deposited Ti02 films in photodegradation of aqu¬eous salicylic acid, Sep. Purif. Technol., 66 (2009) 130-134.
  • [65]Ljubas D., Solar photocatalysis-a possible step in drinking water treatment, Energy, 30 (2005) 1699-1710.
  • [66]Malato S., Fernândez-Ibânez P., Maldonado M.I., Blanco J., Gern- jak, W., Decontamination and disinfection of water by solar pho¬tocatalysis: recent overview and trends, Catal. Today, 147 (2009) 1-59-
  • [67]Frimmel F.H., Impact of light on the properties of aquatic natural organic matter, Environ. Int., 24 (1998) 559-571.
  • [68]Fu J., Ji M., Zhao Y., Wang L., Kinetics of aqueous photocatalytic oxidation of fulvic acids in a photocatalysis-ultrafiltration reactor (PUR), Sep. Purif. Technol., 50 (2006) 107-113.
  • [69]Le-Clech P., Lee E.-K., ChenV., Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters, Water Res., 40 (2006) 323-330.
  • [70]Murray C.A., ParsonsS.A., Preliminary laboratory investigation of disinfection by-product precursor removal using an advanced oxidation process, Water Environ. J., 20 (2006) 123-129.
  • [71]Uyguner C.S., Bekbolet M., Selcuk H., A comparative approach to the application of a physico-chemical and advanced oxidation combined system to natural water samples, Sep. Sci. Technol., 42 (2007) 1405-1419.
  • [72]Uyguner C.S., Suphandag S.A., Kerc A., Bekbolet M., Evaluation of adsorption and coagulation characteristics of humic acids prece¬ded by alternative advanced oxidation techniques, Desalination, 210 (2007)183-193.
  • [73]Choo K.-W., Tao R., Kim M.-J., Use of photocatalytic membrane reactor for the removal of natural organic matter in water: effect of photoinduced desorption and ferrihydrite adsorption, J. Membr. Sci., 322 (2008) 368-374.
  • [74]Liu S., Lim M., Fabris R., Chow C., Drikas M., Amal R., Ti02 photocatalysis of natural organic matter in surface water: impact on trihalomethane and haloacetic acid formation potential, Environ. Sci.Technol., 42 (2008) 6218-6223.
  • [75]Tercero Espinoza L.A., Frimmel F.H., Formation of brominated products in irradiated titanium dioxide suspensions containing bromide and dissolved organic carbon, Water Res., 42 (2008) 1778-1784
  • [76]Bai H., Zhang X., Pan, J., Sun D.D., Shao J., Combination of nano Ti02 photocatalytic oxidation with microfiltration (MF) for na¬tural organic matter removal, Water Sci. Technol.: Water Supply, 9(1) (2009) 31-37.
  • [77]Liu S., Lim M., Fabris R., Chow C., Drikas M., Amal R., Compari¬son of photocatalytic degradation of natural organic matter in two Australian surface waters using multiple analytical techniques, Org. Geochem., 41 (2010) 124-129.
  • [78]Tercero Espinoza L.A., Rembor M., Matesanz C.A., Heidt A., Frimmel F.H., Formation of bromoform in irradiated titanium dioxide suspensions with varying photocatalyst, dissolved organic carbon and bromide concentrations, Water Res., 43 (2009)4143-4148.
  • [79]Tercero Espinoza L.A., Hazeborg E., Weber M., Frimmel F.H., Investigation of the photocatalytic degradation of brown water natural organic matter by size exclusion chromatography, Appl. Catal. B, Environ. 87 (2009) 56-62.
  • [80]Yao P., Choo K., Kim M., A hydridized photocatalysis-microfiltra- tion system with iron oxide-coated membranes for the removal of natural organic matter in water treatment: effects of iron oxide layers and colloids, Water Res., 43 (2009) 4238- 4248.
  • [81]Fu J., Ji M., Wang Z., Jin L., Ana D., A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst, Journal of Hazardous Materials, B131 (2006) 238-242.
  • [82]Ma N., Zhang Y., Quan X., Fan X., Zhao H., Performing a micro¬filtration integrated with photocatalysis using an Ag-Ti02/HAP/ A1203 composite membrane for water treatment: Evaluating ef¬fectiveness for humic acid removal and anti-fouling properties, Water Research, 44 (2010) 6104 -6114.
  • [83]Jung J.-T., Kim J.-O., Performance of a photocatalytic hybrid system coupled with a stainless steel membrane for removal of humic acid, Res Chem Intermed, 35 (2009) 249-255.
  • [84]Kim J., Shan W., Davies S.H.R., Baumann M.J., Masten S.J., Ta- rabara V.V., Interactions of aqueous NOM with nanoscale Ti02: implications for ceramic membrane filtration-ozonation hybrid process. Environ, Sci. Technol., 43 (2009) 5488-5494.
  • [85]Syafei A.D., Lin C.-F., Wu C.-H., Removal of natural organic matter by ultrafiltration with Ti02-coated membrane under UV irradiation, J. Colloid Interface Sci., 323 (2008) 112-119.
  • [86]Toor R., Mohseni M., UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water, Chemosphere, 66 (2007) 2087-2095.
  • [87]Rajca M., Bodzek M., Zintegrowany uklad fotokataliza-ultrafiltra- cja w usuwaniu kwasów fulwowych z wody, w: “Membrany i procesy membranowe w ochronie środowiska” (Bodzek M., Pelczar J., Eds.), Monografie Komitetu Inżynierii Środowiska Polskiej Akademii Nauk, 66 (2010) 151-161.
  • [88]Rajca M., Bodzek M., Usuwanie naturalnych substancji organicz¬nych z wody w układzie fotokataliza-ultrafiltracja, w: „Zaopatrze¬nie w wodę, jakość i ochrona wód - zagadnienia współczesne” (Sozański M., Ed.), Poznań, tom I, (2010) 515-524.
  • [89]Rajca M., Bodzek M., Usuwanie kwasów fulwowych z wody metodami fotokatalicznymi wspomaganymi ultrafiltracją, Inżynieria i Ochrona Środowiska, 14(2) (2011) 101-110.
  • [90]Rajca M., Bodzek M., Cichy J., Kinetyka degradacji kwasów fulwowych w zintegrowanym procesie fotoutlenianie-ultrafiltracja, Ochrona Środowiska, 33(3) (2011) 63-66.
  • [91]Rajca M., Bodzek M., Usuwanie z wody kwasów fulwowych i humusowych w procesie fotoutleniania wspomaganym filtracją membranową, Instal, 12 (2012) 70-78.
  • [92]Rajca M., Effectiveness of water treatment by means of integrated photocatalysis and ultrafiltration processes, Ecological Chemistry and Engineering (A), 19 (2012) 771-778.
  • [93]Rajca M., Zastosowanie mikrofiltracji i ultrafiltracji w membra¬nowych reaktorach fotokatalitycznych podczas usuwania kwasów fulwowych i humusowych z wody, Monografie Komitetu Inżynierii Środowiska PAN, 95 (2012) 423-434.
  • [94]Rajca M., Zastosowanie fotokatalitycznego reaktora membranowego do oczyszczania wód naturalnych, Proceedings of ECOpole, w druku.
  • [95]Makowski A., Sobczak A., Wcisło D., Adamek E., Baran W., Ko¬stecki M., Fotokatalityczna degradacja doksycykliny w roztworach wodnych, Proceedings of ECOpole, 3(1) (2009) 81-86.
  • [96]Kamble S.P., Sawant S.B., Pangarkar V.G., Batch and continuous photocatalytic degradation of benzenesulfonic acid using concentrated solar radiation, Ind. Eng. Chem. Res., 42 (2003) 6705-6713.
  • [97]Kim M.-J., Choo K.-H, Park H.-S., Photocatalytic degradation of seawater organic matter using a submerged membrane reactor, Journal of Photochemistry and Photobiology A: Chemistry, 216 (2010) 215-220.
  • [98]Al-Rasheed R., Cardin D.J., Photocatalytic degradation of humic acid in saline waters. Part 1, Artificial seawater: influence of Ti02, temperature, pH, and air-flow, Chemosphere, 51 (2003) 925-933.
  • [99]Al-Rasheed R., Cardin D.J., Photocatalytic degradation of humic acid in saline waters. Part 2 Effect of various photocatalytic materials,. Applied Catalysis A-General, 246 (2003) 39-48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df898f05-d636-4761-b9d0-b4b96c8b2ef8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.