PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the influence of pin shaft clearance on the bearing performance of the hydraulic support

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pin clearance is a significant factor affecting the bearing capacity of the hydraulic support, but the effect of the pin clearance is often neglected in the current studies. Therefore, on the basis of considering the Equal stiffness spring damping system of the column, the dynamic simulation model of the hydraulic support without clearance was constructed to study the static bearing capacity of the hydraulic support. Moreover, as per the contact model of the connectingpin clearance, the dynamic simulation model of the single-pin clearance hydraulic support was established. The effect of single pin clearance on the load of the front and rear columns of the hydraulic support and the transmission force at key bearing points was analyzed. Meanwhile, the influence of single pin clearance at different positions on the bearing capacity of the hydraulic support was compared. Through the design of orthogonal test, the change of the transmission force of the bearing points under the coupling of multi-pin clearance was studied.
Rocznik
Strony
art. no. 174367
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Shandong University of science and technology, China
autor
  • Shandong University of science and technology, China
Bibliografia
  • 1. Ambrósio JAC. Impact of rigid and flexible multibody systems: deformation description and contact models. Virtual nonlinear multibody systems, 2003: 57-81. https://doi.org/10.1007/978-94-010-0203-5_4.
  • 2. Bhalerao K, Issac KK. Simulation of impact, based on an approach to detect interference. Advances in engineering software, 2006, 37(12): 805-813. https://doi.org/10.1016/j.advengsoft.2006.05.001.
  • 3. Brake M R. An analytical elastic-perfectly plastic contact model. International Journal of Solids and Structures, 2012, 49(22): 3129-3141. https://doi.org/10.1016/j.ijsolstr.2015.02.018.
  • 4. Brake M R W. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts[J]. International Journal of Solids and Structures, 2015, 62: 104-123.https://doi.org/10.1016/j.ijsolstr.2012.06.013.
  • 5. Bu Q, Tu M, Zhang X, et al. Analysis on energy accumulation-dispersion evolution of thick hard roof and dynamic load response of hydraulic support in large space stope. Frontiers in Earth Science, 2022: 572. https://doi.org/10.3389/feart.2022.884361.
  • 6. Cao L, Jin X, Qin J, et al. Research on the hydraulic support top beam based on dynamic load bearing. Frontiers in Earth Science, 2023, 11: 1171342. https://doi.org/10.3389/feart.2023.1171342.
  • 7. Cifuentes A O. Using MSC/NASTRAN: statics and dynamics. Springer Science & Business Media, 2012. https://doi.org/10.1007/978-1-4613-8917-0.
  • 8. Flores P, Ambrósio J, Claro J C P, et al. A study on dynamics of mechanical systems including joints with clearance and lubrication. Mechanism and Machine Theory, 2006, 41(3): 247-261. https://doi.org/10.1016/j.mechmachtheory.2005.10.002.
  • 9. Ge X, Xie J, Wang X, et al. A virtual adjustment method and experimental study of the support attitude of hydraulic support groups in propulsion state. Measurement, 2020, 158: 107743. https://doi.org/10.1016/j.measurement.2020.107743.
  • 10. Guan E, Miao H, Li P, et al. Dynamic model analysis of hydraulic support[J]. Advances in Mechanical Engineering, 2019, 11(1):1687814018820143. https://doi.org/10.1177/1687814018820143.
  • 11. Hertz H. Ueber die Berührung fester elastischer Körper. Journal reine und angewandte Mathematik,1882, (92):156-171.https://doi.org/10.1515/9783112342404-004.
  • 12. Hu X, Liu X, Stability analysis of four-column hydraulic support. Journal of Vibration and Shock, 2021, 40(19): 1-11+25.https://doi.org/10.13465/j.cnki.jvs.2021.19.001.
  • 13. Lankarani H M, Nikravesh P E. Continuous contact force models for impact analysis in multibody systems. Nonlinear Dynamics, 1994, 5: 193-207. https://doi.org/10.1007/bf00045676.
  • 14. Lankarani HM, Nikravesh PE. A contact force model with hysteresis damping for impact analysis of multibody system//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 1989, 3691: 45-51. https://doi.org/10.1115/detc1989-0104.
  • 15. Li H, Jiang D, Syd S Peng, et al. Analysis on loading features and suitability of hydraulic powered caving supports. Coal Science & Technology (0253-2336), 2015, 43(6). https://doi.org/10.13199/j.cnki.cst.2015.06.005.
  • 16. Meng Z, Ma C, Xie Y. Influence of impact load form on dynamic response of chock-shield support. Eksploatacja i Niezawodność – Maintenance and Reliability. 2023;25(3). https://doi.org/10.17531/ein/168316.
  • 17. Pan L, Tang P, Zhou M, et al. Research on prevention and control of rock burst in entry with suspended roof structure [J]. Coal Science and Technology, 2022, 50(4): 42-48.https://doi.org/10.13199/j.cnki.cst.2020-1267.
  • 18. Pang Y, Liu X, Wang H, et al. Support attitude and height analysis method of hydraulic support based on jack stroke drive. Journal of Mining & Safety Engineering,2023:1-14. http://kns.cnki.net/kcms/detail/32.1760.TD.20230309.1621.002.html.
  • 19. Ravn P. A continuous analysis method for planar multibody systems with joint clearance[J]. Multibody System Dynamics,1998,2:1-24. https://doi.org/10.1023/A:1009759826529.
  • 20. Ren H, Zhang D, Gong S, et al. Dynamic impact experiment and response characteristics analysis for 1: 2 reduced-scale model of hydraulic support[J]. International Journal of Mining Science and Technology, 2021, 31(3): 347-356. https://doi.org/10.1016/j.ijmst.2021.03.004.
  • 21. Tian Z, Jing S, Gao S, et al. Establishment and simulation of dynamic model of backfilling hydraulic support with six pillars. Journal of Vibroengineering, 2020, 22(3): 486-497. https://doi.org/10.21595/jve.2019.20512.
  • 22. Wan L, Liu P, Meng Z, et al. Study and analysis on stability of hydraulic powered support for ultra-high mining. Coal Science and technology, 2017,45(1):148-153.http://doi.org/10.13199/j.cnki.cst.2017.01.025.
  • 23. Wan L, Yu X, Zeng X, et al. Capacity analysis of the new balance jack of anti-impact ground pressure hydraulic support. Alexandria Engineering Journal, 2023, 62: 157-167. https://doi.org/10.1016/j.aej.2022.07.002.
  • 24. Wang B, Xie J, Wang X, et al. A new method for measuring the attitude and straightness of hydraulic support groups based on point clouds. Arabian Journal for Science and Engineering, 2021, 46(12): 11739-11757. https://doi.org/10.1007/s13369-021-05689-2.
  • 25. Wang G, Zhang L,Li S, etal. Progresses in theory and technological development of unmanned smart mining system. Journal of China Coal Society,2023,48(1):34-53.http://doi.org/10.13225/j.cnki.jccs.2022.1536.
  • 26. Wang G. New technological progress of coal mine intelligence and its problems. Coal Science and technology, 2022, 50(1): 1-27. https://doi.org/10.13199/j.cnki.cst.2022.01.001.
  • 27. Wang G. Study and practice on technical system of hydraulic powered supports. Journal of China Coal Society,2010,35(11):1903-1908.https://doi.org/10.13199/j.cnki.cst.2017.01.025.
  • 28. Wang S, Li X, Qin Q. Study on surrounding rock control and support stability of Ultra-large height mining face. Energies, 2022, 15(18): 6811. https://doi.org/10.3390/en15186811.
  • 29. Wang X, Cui T, Xie J, et al. Virtual simulation method of hydraulic support motion considering pin shaft clearance. Coal Science and technology,2021, 49(2): 186-193. https://doi.org/10.13199/j.cnki.cst.2021.02.022
  • 30. Wang X, Yang Z, Feng J, et al. Stress analysis and stability analysis on doubly-telescopic prop of hydraulic support. Engineering Failure Analysis, 2013, 32: 274-282. https://doi.org/10.1016/j.engfailanal.2013.04.006.
  • 31. Yan S, Xu G, Fan Z, et al.Development course and prospect of the 50 years’ comprehensive mechanized coal mining in China. Coal Science & Technology (0253-2336), 2021, 49(11). https://doi.org/10.13199/j.cnki.cst.2021.11.001.
  • 32. Zeng Q, Li Y, Yang Y. Dynamic Analysis of Hydraulic Support with Single Clearance[J]. Strojniski Vestnik/Journal of Mechanical Engineering, 2021, 67. https://doi.org/10.5545/sv-jme.2020.6998.
  • 33. Zeng Q, Xu P, Meng Z, et al. Dynamic response characteristics analysis of four chock shield support under impact load. Coal Science and Technology,2023,51(1): 437-445.https://doi.org/10.13199/j.cnki.cst.2022-0975.
  • 34. Zeng Q, Xu W, Gao K. Measurement Method and Experiment of Hydraulic Support Group Attitude and Straightness Based on Binocular Vision. IEEE Transactions on Instrumentation and Measurement, 2023. https://doi.org/10.1109/TIM.2023.3267344.
  • 35. Zhang Y, Zhang H, Gao K, et al. New method and experiment for detecting relative position and posture of the hydraulic support. Ieee Access, 2019, 7: 181842-181854. http://doi.org/10.1109/ACCESS.2019.2958981.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df887935-26a1-4d6a-83c7-d2a2d0c96a61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.