Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Stirling engine type alpha is composed of two cylinders (expansion space E and compression space C), regenerator that forms the space between the cylinders and the buffer space (under the pistons). Before the start-up and as a result of long-term operation, the average pressure in the working space (above the pistons) and in the buffer space is the same. However, in the initial phase of operation, the average pressure in the working space is different then the average pressure in the buffer space depending on the crankshaft starting position (starting angle). This, in turn, causes a large variation in the starting torque. An additional unfavorable factor caused by a large variation in the course of the indicated torque is the rotational speed variation and the formation of torsional vibrations in the drive system. After some time, depending on the quality of the engine piston sealing, the average pressure in the working and buffer space will equalize. The occurrence of the above-described phenomenon affects the selection of the starting electric motor, which can be significantly reduced, when the crankshaft starting position is optimized (the starting torque is several times greater than the average torque occurring in the generator operation mode). This paper presents the analysis of the impact of the crankshaft starting position on the course of the indicated torque and the resulting start-up energy. Starting the engine at an unfavorable position of the crankshaft may, in extreme cases, increase the starting torque even three times.
Czasopismo
Rocznik
Tom
Strony
243--259
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr., wz.
Twórcy
autor
- Gdańsk University of Technology Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] Walker G.: Stirling Engines. Oxford University Press, 1980.
- [2] Żmudzki S.: Stirling Engines. WNT, Warszawa 1993 (in Polish).
- [3] Finkelstein Th., Organ A.J.: Air Engines. ASME, New York 2001.
- [4] Buoro D. et al.: Optimal synthesis and operation of advanced energy supply systems for standard and domotic home. Energ. Convers. Manage. 60(2012), 96–105.
- [5] Bernd Th.: Benchmark testing of micro-CHP units. Appl. Therm. Eng. 28(2008) 2049–2054.
- [6] Harrison J.: Micro Combined Heat & Power. EA Technology SYNOPSIS, 2002.
- [7] Kropiwnicki J.: Design and applications of modern Stirling engines. Combust. Eng. 3(2013), 243–249.
- [8] Cieśliński J., Kropiwnicki J., Kneba Z.: Application of Stirling engines in micro-co-generation. In: District Heating, Heating, Renewable Energy Ssources (W. Zima, D. Taler), Wydaw. Politechniki Krakowskiej, Kraków 2013, 49–60 (in Polish).
- [9] Cieśliński J., Kropiwnicki J., Kneba Z., Woronkin S., Witanowski Ł., Zalewski K.: Investigation of a Stirling engine as a micro-CHP system. In: Proc. 3rd Int. Conf. Low Temperature and Waste Heat Use in Energy Supply Systems Theory and Practice, Bremen 2012, 33–38.
- [10] Kropiwnicki J.: Stirling engines powered by renewable energy sources. In: Proc. 22nd Int. Sym. Research-Education-Technology, Bremen 2015, 231–237.
- [11] Gianluca V. et al.: Experimental and numerical study of a micro-cogeneration Stirling engine for residential applications. Energy Procedia 45(2014), 1235–1244.
- [12] Lane N.W., Beale W.T.: A Biomass-fired 1 kWe Stirling engine generator and its applications in South Africa. In: Proc. 9th Int. Stirling Engine Conf., South Africa, June 2–4, 1999.
- [13] Maier Ch., et al.: Stirling Engine. University of Gävle, Gävle 2007.
- [14] Cheng C.H. et al.: Theoretical and experimental study of a 300-W beta-type Stirling engine. Energy 59(2013), 590–599.
- [15] Gheith R., Aloui F., Ben Nasrallah S.: Experimental investigation of a Gamma Stirling engine. Int. J. Energ. Res. 37(2013), 1519–1528.
- [16] Karabulut H., et al.: An experimental study on the development of a b-type Stirling engine for low and moderate temperature heat sources. Appl. Energ. 86(2009), 68–73.
- [17] Kongtragool B., Wongwises S.: Performance of low-temperature differential Stirling engines. Renew. Energ. 32(2007), 547–566.
- [18] Li T., et al.: Development and test of a Stirling engine driven by waste gases for the micro-CHP system. Appl. Therm. Eng. 33-34(2012), 119–123.
- [19] Sripakagorn A., Srikam C.: Design and performance of a moderate temperature difference Stirling engine. Renew. Energ. 36(2011), 1728–1733.
- [20] Mou J, Hong G.: Startup mechanism and power distribution of free piston Stirling engine. Energy 123(2017), 655–663.
- [21] Tavakolpour-Saleh A.R., et al.: A novel active free piston Stirling engine: Modeling, development, and experiment. Appl. Energ. 199(2017), 400–415.
- [22] Kwankaomeng S., et al.: Investigation on stability and performance of a freepiston Stirling engine. Energy Procedia 52(2014), 598–609.
- [23] Remiorz L., et al.: Comparative assessment of the effectiveness of a free-piston Stirling engine-based micro-cogeneration unit and a heat pump. Energy 148(2018), 134–147.
- [24] Jasiński R.: Operating of components of hydraulic drive of machines in low ambient temperatures. Wydaw. Politechniki Gdańskiej, Gdańsk 2018.
- [25] Stirling DK, http://www.stirling-energie.de (accessed: June 30th 2019).
- [26] Stirling Biopower, http://www.biowkk.eu/wp-content/uploads/2015/02/12748858113- Qalovis-Shrieves-Flexgen.pdf(accessed: June 30th 2019).
- [27] Mazda, https://www2.mazda.com/en/csr/environment/special− features/2009−02−01.html (accessed: June 30th 2019).
- [28] Uchman W., Remiorz L., Kotowicz J.: Economic effectiveness evaluation of the free piston Stirling engine-based micro-combined heat and power unit in relation to classical systems. Arch. Thermodyn. 40(2019), 1, 71–83.
- [29] Ranjan R.K., Verma S.K.: Thermodynamic analysis and analytical simulation of the Rallis modified Stirling cycle. Arch. Thermodyn. 40(2019), 2, 35–67.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df87195e-7935-4e67-bbf3-a6520c46c6cb