PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of ventilation to limit airborne infection concentration in an isolation room

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coronavirus (COVID-19) was detected at the end of 2019 and has since caused a worldwide pandemic. This virus is transferred airborne. In this study, an investigation was carried out of the ventilation strategies inside the isolation room based on exhaust air locations. To reduce the infection disease (COVID-19), due to the spreading of exhaled contaminants by humans in interior environments, five models for ventilation systems differing in the position of the outlet and inlet were used. This study aims to increase knowledge regarding the exhaled contaminant distribution under different environ-mental conditions (opening exhaust and negative pressure). The results showed a good agreement be-tween the computational results and the experimental data. Tracer gas CO2 was used to evaluate the air quality experimentally and computationally. The results showed that stable conditions are obtained inside the room at a negative pressure value above –1.5 Pa. The residence time of the infected airborne decreases when the pressure difference increases. The study revealed that the model with an air outlet opening installed behind the patient enabled avoiding the spread of infection in the room.
Rocznik
Strony
39--54
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Volume and Fluid Flow Metrology Laboratory, National Institute of Standards, Giza, Egypt
  • Department of Mechanical Power Engineering, Faculty of Engineering, Zagazig University, Egypt
  • Department of Force and Material Metrology Laboratory, National Institute of Standards, Giza, Egypt
  • Department of Mechanical Power Engineering, Faculty of Engineering, Zagazig University, Egypt
autor
  • Department of Mechanical Power Engineering, Faculty of Engineering, Zagazig University, Egypt
Bibliografia
  • [1] FENNELLY K.P., MARTYNY J.W., FULTON K.E., ORME I.M., CAVE D.M., HEIFETS L.B., Cough-generated aerosols of Mycobacterium tuberculosis: a new method to study infectiousness, Am. J. Respir. Crit. Care Med., 2004, 169 (5), 604–609. DOI: 10.1164/rccm.200308-1101OC.
  • [2] YU I.T.S., LI Y., WONG T.W., TAM W., CHAN A.T., LEE J.H.W., LEUNG D.Y.C., HO T., Evidence of airborne transmission of the severe acute respiratory syndrome virus, N. Eng. J. Med., 2004, 350 (17), 1731–1739. DOI: 10.1056/NEJMoa032867.
  • [3] RENDANA M., Impact of the wind conditions on COVID-19 pandemic. A new insight for direction of the spread of the virus, Urban Clim., 2020, 34, 100680. DOI: 10.1016/j.uclim.2020.100680.
  • [4] LI Y., HUANG X., YU I.T., WONG T.W., QIAN H., Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong, Indoor Air, 2005, 15 (2), 83–95. DOI: 10.1111/j.1600-0668.2004.00317.
  • [5] ZHANG Z., CHEN Q., Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms, Atmos. Environ., 2006, 40 (18), 3396–3408. DOI: 10.1016 /j.atmosenv.2006.01.014.
  • [6] SARAVIA S.A., RAYNOR P.C., STREIFEL A.J., A performance assessment of airborne infection isolation rooms, Am. J. Infect. Control, 2007, 35 (5), 324–331. DOI: 10.1016/j.ajic.2006.10.012.
  • [7] KALLIOMÄKI P., HAGSTRÖM K., ITKONEN H., GRÖNVALL I., KOSKELA H., Effectiveness of directional airflow in reducing containment failures in hospital isolation rooms generated by door opening, Build. Environ., 2019, 158, 83–89. DOI: 10.1016/j.buildenv.2019.04.034.
  • [8] YANG B., MELIKOV A.K., KABANSHI A., ZHANG C., BAUMAN F.S., CAO G., LIN Z., A review of advanced air distribution methods-theory, practice, limitations and solutions, Energy Build., 2019, 202, 109359. DOI: 10.1016/j.enbuild.2019.109359.
  • [9] MELIKOV A.K., Advanced air distribution: improving health and comfort while reducing energy use, Indoor Air, 2016, 26 (1), 112–124. DOI: 10.1111/ina.12206.
  • [10] CAO G., AWBI H., YAO R., FAN Y., SIRÉN K., KOSONEN R., ZHANG J.J., A review of the performance of different ventilation and airflow distribution systems in buildings, Build. Environ., 2014, 73, 171–186. DOI: 10.1016/j.buildenv.2013.12.009.
  • [11] BRUNEKREEF B., FORSBERG B., Epidemiological evidence of effects of coarse airborne particles on health, Eur. Respir. J., 2005, 26 (2), 309–318. DOI: 10.1183/09031936.05.00001805.
  • [12] DYER J., COVID-19 forced hospitals to build negative pressure rooms fast, Infect. Control Today, 2020.
  • [13] MOUSAVI E.S., POLLITT K.J.G., SHERMAN J., MARTINELLO R.A., Performance analysis of portable HEPA filters and temporary plastic anterooms on the spread of surrogate coronavirus, Build. Environ., 2020, 183, 107186. DOI: 10.1016/j.buildenv.2020.107186.
  • [14] MOUSAVI E.S., NAFCHI A.M., DESJARDINS J.D., LEMATTY A.S., FALCONER R.J., ASHLEY N.D., MOSCHELLA P., Design and in-vitro testing of a portable patient isolation chamber for bedside aerosol containment and filtration, Build. Environ., 2020, 207, 108467. DOI: 10.1016/j.buildenv.2021.108467.
  • [15] DAO H.T., KIM K.S., Behavior of cough droplets emitted from COVID-19 patient in hospital isolation room with different ventilation configurations, 2022, Build. Environ., 209, 108649. DOI: 10.1016/j.buildenv.2021.108649.
  • [16] SARKIS-ONOFRE R., DO CARMO BORGES R., DEMARCO G., DOTTO L., SCHWENDICKE F., DEMARCO F.F., Decontamination of N95 respirators against SARS-CoV-2. A scoping review, J. Dent., 2021, 104, 10353. DOI: 10.1016/j.jdent.2020.103534.
  • [17] GRINSHPUN S.A., YERMAKOV M., Impact of face covering on aerosol transport patterns during coughing and sneezing, J. Aerosol Sci., 2021, 158, 10584. DOI:. 10.1016/j.jaerosci.2021.105847.
  • [18] CHO J., Investigation on the contaminant distribution with improved ventilation system in hospital isolation rooms: Effect of supply and exhaust air diffuser configurations, Appl. Therm. Eng., 2019, 148, 208–218. DOI: 10.1016/j.applthermaleng.2018.11.023.
  • [19] KASSEM F.A., ABDELGAWAD A.F., ABUEL-EZZ A.E., NASSIEF M.M., ADEL M., Design and performance evaluation of a portable chamber for prevention of aerosol airborne infection, J. Adv. Res. Fluid Mech. Therm. Sci., 2022, 100 (2), 181–197. DOI: 10.37934/arfmts.100.2.181197.
  • [20] KASSEM F.A., ABDELGAWAD A.F., ABUEL-EZZ A.E., NASSIEF M.M., SAMAHA S.H., ADEL M., Performance evaluation of different texture material masks to reduce airborne infection, CFD Lett., 2023, 15 (7).
  • [21] FLUENT. Fluent 16.0 User’s Guide.
  • [22] KASSEM F.A., ABDELGAWAD A.F., ABUEL-EZZ A.E., NASSIEF M.M., ADEL M., Recent preventive methods to reduce the infection diseases by air distributions control, J. Measure. Sci. Appl., 2023, 1 (1). DOI: 10.21608/JMSA.2023.288124.
  • [23] ASHRAE 62.1.2009, Calculation of CO2 concentration in a zone, Retrieved Sep. 23th, 2016.
  • [24] Guidelines for Indoor Air Quality, King Mongkut’s University of Technology Thonburi, 2013.
  • [25] LIU Y., NING Z., CHEN Y., GUO M., LIU Y., GALI N.K., DUAN Y., CAI J., WESTERDAHL D., LIU X., XU K., HO K.F., KAN H., FU Q., LAN K., Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals, Nature, 2020, 582 (7813), 557–560. DOI: 10.1038/s41586-020–2271-3.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df8393b9-1937-4c45-a206-a92a7485a2a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.