PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemical and fractal analysis of enclaves in the Dehe-Bala intrusion, (Northwestern Iran) : a new concept to the interpretation of crust-mantle interaction process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Dehe-Bala intrusion is one of the remarkable intrusions of granodiorite rocks with I-type affinity and abundant mafic microgranular enclaves (MMEs) in the Buin Zahra area, Qazvin, Iran. The MMEs, composed of diorite and quartz-monzodiorites, are haphazardly widespread in the granodiorites. The Dehe-Bala Granodiorites (DBG) usually are characterized by high contents of SiO2 (64.2-66.9), Na2O (3-3.23), K2O (3.49-4), Mg# 4.84 and Th/Ta ratio (≈7.9). In comparison to the DBG, the MMEs can be distinguished by their lower value of SiO2 (52.8-58.2), K2O (1.4-3.8) and higher Mg# (0.4-0.46). All these characteristics show a different composition of the DBG and MMEs, more importantly, can argue in favor of a magma mixing/mingling origin in the DBG. The enrichment in total REEs and HFSEs in the MMEs clearly reflects a marked diffusional process from the felsic to mafic magma that could have been achieved by chemical exchange during the magma mixing/mingling process. The fractal dimensions (Dbox) of MMEs differ from 1.14 to 1.29 with the highest frequency at 1.29. The textural heterogeneity and geochemical features combined with high Dbox values in the MMEs compared with the DBG show lower degrees of mixing/mingling between mantle-derived mafic and lower crust-derived felsic magmas.
Rocznik
Strony
505--521
Opis fizyczny
Bibliogr. 69 poz., fot., rys., tab., wykr.
Twórcy
  • School of Geology, ColIege of Science, University of Tehran, Tehran, Iran
autor
  • School of Geology, ColIege of Science, University of Tehran, Tehran, Iran
  • School of Geology, ColIege of Science, University of Tehran, Tehran, Iran
Bibliografia
  • 1. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spak-man, W., Monié, P., Meyer, B., Wortel, R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148: 692-725.
  • 2. Alberta, H., Perugini, D., Marti, J., 2014. Fractal analysis of enclaves as a new tool for estimating rheological properties of magmas during mixing: the case of Montan a Reventada (Tenerife, Canary Islands). Pure and Applied Geophysics, doi: 10.1007/s00024-014-0917-5.
  • 3. Barbarin, B., 1990. Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada batholith, California. Journal of Geophysical Research, 95: 17747-17756.
  • 4. Barbarin, B., 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos, 80: 155-177.
  • 5. Baxter, S., Feely, M., 2002. Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76: 63-74.
  • 6. Berberian, M., King, G.C.P., 1981. Towards a palaeogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18: 210-265.
  • 7. Best, M., 1982. Igneous and Metamorphic Petrology. Freeman, San Francisco.
  • 8. Boudreau, A.E., 1999. PELE - a version of the MELTS software program for the PC platform. Computers & Geosciences, 25: 201-203.
  • 9. Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: Rare Earth Element Geochemistry (ed. P. Henderson): 63-114. Elsevier, Amsterdam.
  • 10. Bussy, F., Ayrton, S., 1990. Quartz textures in dioritic rocks of hybrid origin. Schweizerische Mineralogische und Petrographische Mitteilungen, 70: 223-235.
  • 11. Castro, A., 2013. The off-crust origin of granite batholiths. Geoscience Frontiers, 5: 63-75.
  • 12. Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geology, 8: 173-174.
  • 13. Chen, B., Chen, Z.C., Jahn, B.M., 2009. Origin of mafic enclaves from the Taihang Mesozoic orogen, north China craton. Lithos, 110: 343-358.
  • 14. Clemens, J.D., Stevens, G., 2012. What controls chemical variation in granitic magmas? Lithos, 134(135): 317-329.
  • 15. Collins, W.J., 1996. Lachlan Fold Belt granitoids: products of three-component mixing. Transactions of the Royal Society of Edinburgh Earth Sciences, 87: 171-181.
  • 16. Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysics Research, 95: 21503-21521.
  • 17. Eghlimi, B., 2000. Geological map of Danesfahan (Khiaraj) scale 1:100,000 (in Persian). Geological Survay of Iran, Tehran, Iran.
  • 18. Farner, M.J., Lee, C.T.A., Putirka, K.D., 2014. Mafic-felsic magma mixing limited by reactive processes: a case study of biotite-rich rinds on mafic enclaves. Earth and Planetary Science Letter, 393: 49-50.
  • 19. Fourcade, S. and Allègre, C.J., 1981. Trace element behavior in granite genesis: a case study of the calc-alkaline plutonic association from the Querigut complex (Pyrenees, France). Contributions to Mineralogy and Petrology, 76: 177-195.
  • 20. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42: 20-33.
  • 21. Giordano, D., Russell, J.K., and Dingwell, D.B., 2008. Viscosity of magmatic liquids: a model. Earth and Planetary Science letters, 271: 123-134.
  • 22. Green, T.H., 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust mantle system. Chemical Geology, 120: 347-359.
  • 23. Grove, D.C., and Sando, T.W., 1982. Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing. Contributions to Mineralogy and Petrology, 80: 160-182.
  • 24. Hildreth, W., Moorbath, S., 1988. Crustal contribution to arc magmatism in the Andes of centeral Chile. Contributions to Mineralogy and Petrology, 98: 455-489.
  • 25. Hofmann, A.W., White, M., 1983. Ba, Rb and Cs in the earth mantle. Naturforsch, 38: 258-266.
  • 26. Huang, H., Niu, Y., Zhao, Z., Hei, H., Zhu, D., 2011. On the enigma of Nb-Ta and Zr-Hf fractionation a critical review. Journal of Earth Science, 22: 52-66.
  • 27. Hu, J., Jian, Sh.Y., Zhao, H.X., Shao, Y., Zhang, Z.Z., Xiao, E., Wang, Y.F., Dai, B.Z. and Li, H.Y., 2012. Geochemistry and petrogenesis of the Huashan granites and their implications for the Mesozoic tectonic setting in the Xiaoqinling gold mineralization belt, NW China. Journal of Asian Earth sciences, 56:276-289.
  • 28. Kananian, A., Sarjoughian, F., Nadimi, A.R., Ahmadian, J., Ling. W., 2014. Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh-Dokhtar Magmatic Arc (Iran): implications for source regions and magmatic evolution. Journal of Asian Earth Sciences, 90: 137-148.
  • 29. Karsli, O., Chen, B., Aydin, F., Şen, C., 2007. Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos, 98: 7-96.
  • 30. Kemp, A.I., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M., Whitehouse, M.J., 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315: 980-983.
  • 31. Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist, 68: 277-279.
  • 32. Kumar, S., 2010. Mafic to hybrid microgranular enclaves in the Ladakh batholith, northwestern Himalaya: implications on calc-alkaline magma chamber processes. Journal of Geological Society of India, 6: 5-25.
  • 33. Kumar, S., Pieru, T., 2010. Petrography and major element geochemistry of microgranular enclaves and Neoproterozoic granitoids of South Khasi, Meghalaya: evidence of magma mixing and alkali diffusion. Journal of Geological Society India, 76: 345-360.
  • 34. Kumar, S., Rino, V., Pal, A.B., 2004. Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, central India. Gondwana Research, 7: 539-548.
  • 35. Landenberger, B., Collins, W.J., 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: evidence from the Chaelundi complex, Eastern Australia. Journal of Petrology, 37: 145-170.
  • 36. Laumonier, M., Scaillet, B., Pichavant, M., Champallier, R., Andujar, J., Arbaret, L., 2014. On the conditions of magma mixing and its bearing on andesite production in the crust. Nature Cominucation, article number: 5607, doi: 10.1038/ncomms6607.
  • 37. Lesher, C.E., 1990. Decoupling of chemical and isotopic exchange during magma mixing. Nature, 344: 235-237.
  • 38. Liu, Z., Jiang, Y.H., Jia, R.Y., Zhao, P., Zhou, Q., 2015. Origin of Late Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Tibet Plateau, northwest China: implications for Paleo-Tethys evolution. Gondwana Research, 27: 326-341.
  • 39. Mandelbrot, B.B., 1982. The Fractal Geometry of Nature. W.H. Freeman, New York.
  • 40. Mandelbrot, B.B., 1989. Fractal geometry: what is it, and what does it do? In: Fractals in the Natural Sciences (eds. F.R.S. Fleischmann, D. Tildesley and R.C. Ball). Princeton University Press, Princeton NJ.
  • 41. Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geology Society of American Bulletin, 101: 635-643.
  • 42. Moradian, A., 1997. Geochemistry, Geochronology and Petrography of Feldspathoid Bearing Rocks in Urumieh-Dokhtar Volcanic Belt, Iran. Unpublished Ph.D thesis, University of Wollongong, Australia.
  • 43. Morata, D., Oliva, C., Cruz, R.D.l., Suarez, M., 2005. The Bandurrias gabbro: Late Oligocene alkaline magmatism in the Patagonian Cordillera. Journal of South American Earth Sciences, 18: 147-162.
  • 44. Patiño Douce, A.E., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society of London Special Publications, 168: 55-75.
  • 45. Patiño Douce, A.E., Johnston, A.D., 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 107: 202-218.
  • 46. Perugini, D., Poli, G., 2000. Chaotic dynamics and fractals in magmatic interaction processes: a different approach to the interpretation of mafic microgranular enclaves. Earth and Planetary Science Letters, 175: 93-103.
  • 47. Perugini, D., Poli, G., 2005. Viscous fingering during replenishment of felsic magma chambers by continuous inputs of mafic magmas: field evidence and fluid-mechanics experiments. Geology, 33: 5-8.
  • 48. Perugini, D., Poli, G., 2012. The mixing of magmas in plutonic and volcanic environments: analogies and differences. Lithos, 153: 263-279.
  • 49. Perugini, D., Poli, G., Christofides, G., Eleftheriadis, G., 2003. Magma mixing in the Sithonia plutonic complex, Greece: evidence from mafic microgranular enclaves. Mineralogy and Petrology, 78: 173-200.
  • 50. Perugini, D., De Campos, C.P., Dingwell, D.B., Petrelli,M., Poli, G., 2008. Trace element mobility during magma mixing: preliminary experimental results. Chemical Geology, 256: 146-157.
  • 51. Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36: 891-931.
  • 52. Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33: 267-309.
  • 53. Safarzadeh, E., 2007. Petrogheraphy and petrology of Haji Abad pluton (in Persian with English abstract). MSc. thesis, University of Shahid Beheshti, Tehran, Iran.
  • 54. Sawka, W.N., 1988. REE and trace element variations in accessory minerals and hornblende from the strongly zoned McMurry Meadows pluton, California. Transactions of the Royal Society of Edinburgh, 79: 157-168.
  • 55. Sisson, T.W., Ratajeski, K., Hankins, W.B., Glazner, A.F., 2005. Voluminous graniticmagmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148: 635-661.
  • 56. Słaby, E., Śmigielski, M., Śmigielski, T., Domonik, A., Simon, K., Kronz, A., 2011. Chaotic three-dimensional distribution of Ba, Rb, and Sr in feldspar megacrysts grown in an open magmatic system. Contribution to Mineralogy and Petrology, 162: 909-927.
  • 57. Shellnutt, J.G., Wang, C.Y., Zhou, M.F., Yang, Y., 2009. Zircon Lu-Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China): constraints on the mantle source. Journal of Asian Earth Science, 35: 45-55.
  • 58. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London, Special Publications, 42: 313-345.
  • 59. Tabakhe Shabani, A.A., 1990. Petrogheraphy and petrology of igneous plutons of south Boien Zahra. (in Persian with English abstract). MSc. thesis, University of Kharazmi, Karaj, Iran.
  • 60. Tindle, A.G., 1991. Trace element behaviour in microgranular enclaves from granitic rocks. In: Enclaves and Granite Petrology, Developments in Petrology (eds. J. Didier and B. Barbarin): 13: 13-33. Elsevier, Amsterdam.
  • 61. Vernon, R.H., 1983. Restites, xenoliths and microgranitoid enclaves in granites. Journal and proceedings of the Royal Society of New South Wales (London), 116: 77-103.
  • 62. Vernon, R.H., Etheridge, M.A., Wall, V.J., 1988. Shape and microstructures of microgranitoid enclaves: indicators of magma mingling and flow. Lithos, 22: 1-11.
  • 63. Vogel, T.A., Younker, L.W., Wilband, J.T., Kampueller, E., 1984. Magma mixing: the Marsco suite, Isle of Skye, Scotland. Contributions to Mineralogy and Petrology, 87: 231-241.
  • 64. Wang, Q., McDermott, F., Xu, J.F., Bellon, H., Zhu, Y.T., 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology, 33: 465-468.
  • 65. Watson, E.B., 1981. Diffusion in magmas at depth in the earth: the effects of pressure and dissolved He2O. Earth Planetary Science Letter, 52: 291-301.
  • 66. Wilson, M., 1989. Igneous petrogenesis: Interpretation and Application. Chapman and Hall, London.
  • 67. Wilson, M., 2007. Igneous Petrogenesis, A Global Tectonic Approach. Springer.
  • 68. White, A.J.R., Chappell, B.W., Wyborn, D., 1999. Application of the restite model to the Deddick Granodiorite and its enclaves - a reinterpretation of the observations and data of Maas, R., Nicholls, I.A., and Legg, C., 1997. Jornal of Petrology, 40: 413-421.
  • 69. Zhao, K.D., Jiang, S.Y., Yang, S.Y., Dai, B.Z., Lu, J.J., 2012. Mineral chemistry, trace elements and Sr\Nd\Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Research, 22: 310-324.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df785df0-f7ca-4401-bc49-03efbf87c7ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.