PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of temperature on the shear strength of GFRP-aluminium alloy 2024-T3 single lap joint

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ temperatury na wytrzymałość na ścinanie połączenia adhezyjnego pomiędzy kompozytem GFRP a blachą ze stopu aluminium 2024-T3
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of experimental studies determining the effect of temperature on the shear strength of the adhesive joint between the layers of the fiber metal laminate (FML). The tests were carried out for composites being a combination of 2024-T3 aluminum alloy sheet and Glass Fiber-Reinforced Polymer (GFRP) made in the autoclave process. The key factor determining the quality of layered composites is the high strength adhesive joint between the layers. Due to the possibility of extreme temperature conditions during utilization of the composite structure, tests were carried out at reduced temperatures, i.e. -60°C, as well as elevated temperatures, i.e. 80°C. The obtained results were related to the results obtained at a room temperature (RT). The study showed that at the elevated temperature the shear strength increased by approx. 10% compared to the result obtained at room temperature. There is also a significant reduction in the stiffness of the joint as the temperature increases. In turn, a slight increase in joint stiffness was demonstrated for the reduced temperature.
PL
W pracy przedstawiono wyniki badań eksperymentalnych określających wpływ temperatury na wytrzymałość na ścinanie połączenia adhezyjnego pomiędzy warstwami składowymi hybrydowego kompozytu metalowo-włóknistego (FML). Próby przeprowadzono dla kompozytów będących połączeniem blachy ze stopu aluminium 2024-T3 oraz kompozytu szklanego polimerowo-włóknistego (ang. Glass Fiber-Reinforced Polymer - GFRP) wykonanych w procesie autoklawowym. Kluczowym czynnikiem determinującym jakość kompozytów warstwowych jest wysokiej wytrzymałości połączenie adhezyjne pomiędzy warstwami. Ze względu na możliwość występowania różnych warunków temperaturowych w procesie eksploatacyjnym struktury kompozytowej, zrealizowano badania w temperaturach obniżonej tj. -60°C, a także podwyższonej tj. 80°C. Uzyskane rezultaty odniesiono do wyników uzyskanych w temperaturze pokojowej. W pracy wykazano, że w podwyższonej temperaturze dochodzi do wzrostu wytrzymałości na ścinanie o ok. 10% w stosunku do rezultatu uzyskanego w temperaturze pokojowej. Dochodzi tu także do znacznego obniżenia sztywności połączenia wraz ze wzrostem temperatury. Dla obniżonej temperatury wykazano z kolei nieznaczny wzrost sztywności połączenia.
Rocznik
Tom
Strony
30--35
Opis fizyczny
Bibliogr. 29 poz., il. kolor., fot., wykr.
Twórcy
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • [1] Adams R.D., Coppendale J., Mallick V., Al-Hamdan H. 1992. “The effect of temperature on the strength of adhesive joints". International Journal of Adhesion and Adhesives 12:185-90.
  • [2] Adams R.D., Mallick V. 1993. “The effect of temperature on the strength of adhesively-bonded composite- aluminium joints". J. Adhes. 43: 17-33.
  • [3] Banea M.D., da Silva L.F.M., Campilho R.D.S.G. 2014. “Effect of temperature on the shear strength of aluminium single lap bonded joints for high temperature applications". Journal of Adhesion Science and Technology 28(14-15): 1367-1381.
  • [4] Banea M.D., da Silva L.F.M. 2009. “Mechanical characterization of flexible adhesives". Journal of Adhesion 85:261-85.
  • [5] Critchlow G.W., Brewis D.M. 1996. “Review of surface pretreatments for aluminium alloys". International Journal of Adhesion and Adhesives 16(4): 255-275.
  • [6] Deb A., Malvade I., Biswas P., Schroeder J. 2008. “An experimental and analytical study of the mechanical behaviour of adhesively bonded joints for variable extension rates and temperatures". International Journal of Adhesion and Adhesives 28: 1-15.
  • [7] Giannis S., Hansen K. 2010. Investigation on the Joining of CFRP-to-CFRP and CFRP-to-Aluminium for a Small Aircraft Structural Application. 25th Technical Conference of the American Society for Composites an 14th US-Japan Conference on Composite Materials.
  • [8] Heidenwolf G. 2005. GLARE - Industrialization of an Advanced Light Weight Material, Airbus Deutschland GmbH A380 Programme.
  • [9] Hua Y., Gu L., Trogdon M. 2012. “Three-dimensional modeling of carbon/epoxy to titanium single-lap joints with variable adhesive recess length”. International Journal of Adhesion and Adhesives 38: 25–30.
  • [10] Ishii K., Imanaka M., Nakayama H.J. 2007. “Fatigue crack propagation behavior of adhesively-bonded CFRP/aluminum joints”. Adhes. Sci. Technol. 21: 153–167.
  • [11] ISO 6892-1:2016. Metallic Materials - Tensile Testing - Part 1: Method of Test at Room Temperature. Geneva: International Organization for Standardization.
  • [12] Kang S.G., Kim M.G., Kim C.G. 2007. “Evaluation of cryogenic performance of adhesives using composite- aluminum double-lap joints”. Composite Structures 78:440–6.
  • [13] Khalili S.M.R., Mittal R.K., Kalibar G.S. 2005. “A study of the mechanical properties of steel/aluminium/ grp laminates”. Materials Science and Engineering 412(1-2): 137–140.
  • [14] Khoshravan M., Mehrabadi F.A. 2012. “Fracture analysis in adhesive compositematerial/aluminum joints under mode-I loading; experimental and numerical approaches. International Journal of Adhesion and Adhesives 39: 8–14.
  • [15] Kubit A., Trzepiecinski T., Kłonica M., Hebda M., Pytel M. “The influence of temperature gradient thermal shock cycles on the interlaminar shear strength of fibre metal laminate composite determined by the short beam test”. Composites Part B 176: 107217.
  • [16] Narasimhan S., Shenoi R. A., Jeong, H. K. 2004. “Three-dimensional stresses in adhesively bonded lap joints with non-identical adherends”. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications 218(4): 283–298.
  • [17] Owens J., Lee-Sullivan P. 2000. “Stiffness behavior due to fracture in adhesively bonded composite-to-aluminum joints II”. International Journal of Adhesion and Adhesives 20: 47–58.
  • [18] Pahr D.H., Rammerstorfer F.G., Rosenkranz P., Humer K., Weber H. W. 2002. “A study of short-beam- shear and double-lap-shear specimens of glass fabric/epoxy composites”. Composites Part B: Engineering 33(2): 125-132.
  • [19] Park S.Y., Choi W.J., Choi H.S., Kwon H. 2010. “Effects of surface pre-treatment and void content on GLARE laminate process characteristics”. Journal of Materials Processing Technology 210(8):1008-1016.
  • [20] Ray B. C. 2005. “Thermal shock and thermal fatigue on delamination of glass fiber reinforced polymeric composites”. Journal of Reinforced Plastics and Composites 24(1): 111-16.
  • [21] Schneider K., Lauke B., Beckert W. 2001. “Compression shear test (CST) - a convenient apparatus for the estimation of apparent shear strength of composite materials”. Applied Composite Materials 8(1):43-62.
  • [22] Seong M., Kim T., Nguyen K., Kweon J., Choi J. 2008. “A parametric study on the failure of bonded single-lap joints of carbon composite and aluminum”. Composite Structure 86(1-3): 135–145. Schneider K., Lauke B., Beckert W. 2001. “Compression shear test (CST) - a convenient apparatus for the estimation of apparent shear strength of composite materials”. Applied Composite Materials 8(1):43-62.
  • [23] da Silva L.F.M., Adams R.D. 2006. “Stress-free temperature in a mixed-adhesive joint”. Journal of Adhesion Science and Technology 20(15):1705-1726.
  • [24] da Silva L.F.M., Adams R. 2007. „Techniques to reduce the peel stresses in adhesive joints with composites”. International Journal of Adhesion and Adhesives 27: 216–226.
  • [25] Sinmazcelik T., Avcu E., Ozgur Bora M., Coban O. 2003. “A review: Fibre metal laminates, background, bonding types and applied test methods”. Materials and Design 32: 3671–3685.
  • [26] Srivastava V.K. 2003. “Characterization of adhesive bonded lap joints of C/C-SiC composite and Ti-6Al4V alloy under varying conditions”. International Journal of Adhesion and Adhesives 23:59–67.
  • [27] Teixeira de Freitas S., Sinke J. 2014. “Adhesion Properties of Bonded Composite-to-Aluminium Joints Using Peel Tests”. The Journal of Adhesion 90(5-6): 511–525.
  • [28] Trzepiecinski T., Kubit A., Kudelski R., Kwolek P, Obłój A. 2018. „ Strength properties of aluminium/ glass-fiber-reinforced laminate with additional epoxy adhesive film interlayer”. International Journal of Adhesion and Adhesives 85:29-36.
  • [29] https://www.hexcel.com/Resources/DataSheets/Prepreg Conference of the American Society for Composites and 14th US-Japan Conference on Composite Materials.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df752c17-f935-419c-a74d-5dc40a5e59d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.