PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Overview of Particle Agglomeration Techniques to Waste Utilization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Particulate materials and waste from industrial processes are troublesome in storage, transport and utilization, mainly due to their large volume and dusting. Therefore, originally the main reason for developing the agglomeration processes was to eliminate the afore-mentioned disadvantages. However, the modifications introduced to the merging processes of materials enabled obtaining a new type of products widely used in various applications. For the agglomeration of the inorganic materials, often containing hazardous substances, the disposal and transformation technologies are available for the safe products that can be used, for example, in civil engineering and construction. In turn, the agglomeration of the materials containing organic substances or fine coal, producing alternative fuels for energy recovery. Obviously, the combustion of these fuels results in a subsequent generation of waste in the form of bottom and fly ash, but they can be successfully further agglomerated to produce more valuable products. The numerous examples of the use of various agglomeration techniques to complete utilization of fine grains was shown. An additional effect of the agglomeration processes was also the fulfilment of the economy criteria, which matches with the principles of sustainable development of the environment. Supporting by worldwide literature, the selected agglomeration techniques were discussed, such as: solidification, granulation, extrusion, briquetting, as well as post-agglomeration high-temperature processing.
Słowa kluczowe
Rocznik
Strony
263--271
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Arslan, H., Baykal, G., 2006. Utilization of fly ash as engineering pellet aggregates. Environmental Geology, 50(5), 761–770.
  • 2. Borowski G. 2011. Processing of ash from the incineration of sewage sludge into building material (in Polish). Inżynieria Ekologiczna, 25, 251–258.
  • 3. Borowski G., Gajewska M., Haustein E. 2014. Possibilities of ashes utilization from sewage sludge thermal processing in a fluidized bed boiler (in Polish). Inżynieria i Ochrona Środowiska, 17(3), 393–402.
  • 4. Borowski G., Ozga M. 2020. Comparison of the processing conditions and the properties of granules made from fly ash of lignite and coal. Waste Management, 104C, 192–197.
  • 5. Chokshi R., Zia H. 2004. Hot-melt extrusion technique: A review. Iranian Journal of Pharmaceutical Research, 3, 3–16.
  • 6. del Valle-Zermeño R., Formosa J., Chimenos J.M., Martínez M., Fernández A.I. 2013. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Management, 33(3), 621–627.
  • 7. Dinh Hieu V., Kuen-Sheng W., Jung-Hsing C., Bui Xuan N., Bui Hoang B., 2012. Glass-ceramic from mixtures of bottom ash and fly ash. Waste Management, 32, 2306–2314.
  • 8. Fathi M.H., Kharaziha M., 2009. Two step sintering of dense, nanostructural forsterite. Materials Letters, 63(17), 1455–1458.
  • 9. Fernández-González D., Ruiz-Bustinza I., Mochón J., González-Gasca C., Verdeja L.F. 2017. Iron ore sintering: raw materials and granulation. Mineral Processing and Extractive Metallurgy Review, 38(1), 36–46.
  • 10. Gesoglu M., Güneyisi E., Öz H.Ö. 2012. Properties of lightweight aggregates produced with coldbonding pelletization of fly ash and ground granulated blast furnace slag. Materials and Structures, 45, 1535–1546.
  • 11. Giemza H., Gruszka G, Hycnar J., Józefiak T., Kiermaszek K. 2007. Optimization of coal sediment management – sediment briquetting technology (in Polish). Polityka Energetyczna, 10(2), 417–429.
  • 12. Herting M.G., Kleinebudde P. 2007. Roll compaction/dry granulation: Effect of raw material particle size on granule and tablet properties. International Journal of Pharmaceutics, 338, 110–118.
  • 13. Holger L., Lampke J. 2016. Technical and economic aspects of granulation of coal. In: Litvinenko V. (Ed.) XVIII International Coal Preparation Congress, Springer, Cham, pp. 383-389, https://doi.org/10.1007/978-3-319-40943-6_57.
  • 14. Huang G.X., Chen L.J., Cao J. 2008. Briquetting mechanism and waterproof performance of bio-briquette. Journal of China Coal Society, 33, 812–815.
  • 15. Huang S.-C, Chang F.-C, Lo S.-L., Lee M.-Y, Wang C.-F., Lin J.-D. 2007. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of Hazardous Materials, 144(1–2), 52–58.
  • 16. Iveson S.M., Litster J.D., Hapgood K., Ennis B.J. 2001. Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technology, 117(1–2), 3–39.
  • 17. Johnson O.A., Napiah M., Kamaruddin I., 2014. Potential uses of waste sludge in construction industry: A review. Research Journal of Applied Sciences, Engineering and Technology, 8(4), 565–570.
  • 18. Kelbaliyev G.I., Samedli V.M., Samedov M.M., Kasimova R.K. 2013. Experimental study and calculation of the effect of intensifying additives on the strength of superphosphate granules. Russian Journal of Applied Chemistry, 86(10), 1478–1482.
  • 19. Kumar A., Gernaey K.V., De Beer T., Nopens I. 2013. Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production – A critical review. European Journal of Pharmaceutics and Biopharmaceutics, 85(3)B, 814–832.
  • 20. Kumar S.A. 2012. Rheological investigation of coal water slurries with and without additive. Thapar University Patiala – 147004, India.
  • 21. Lakhani R., Kumar R., Tomar P. 2014. Utilization of stone waste in the development of value added products: A state of the art review. Journal of Engineering Science and Technology Review, 7(3), 180–187.
  • 22. Lazaro M.J., Boyano A., Galvez M.E., Izquierdo M.T., Moliner R. 2007. Low-cost carbon-based briquettes for the reduction of NO emissions from medium–small stationary sources. Catalysis Today, 119, 175–180.
  • 23. Lóh N.J., Simão L., Faller C.A., De Noni Jr A., Montedo O.R.K. 2016. A review of two-step sintering for ceramics. Ceramics International, 42, 12556–12572.
  • 24. Mangwandi C., Adams M.J., Hounslow M.J., Salman A.D. 2011. Effect of batch size on mechanical properties of granules in high shear granulation. Powder Technology, 206(1–2), 44–52.
  • 25. Mayer J., Sussa J. 2021. Solidification immobilization and encapsulation of waste and contaminants. Puratek Anlagentechnik GmbH, Germany (www. puratek.eu), pp. 8.
  • 26. Medici F., Piga L., Rinaldi G. 2000. Behaviour of polyaminophenolic additives in the granulation of lime and fly-ash. Waste Management, 20(7), 491–498.
  • 27. Mitrus M., Wójtowicz A., Oniszczuk T., Gondek E., Mościcki L. 2017. Effect of processing conditions on microstructure and pasting properties of extrusion-cooked starches. International Journal of Food Engineering, 13(6), 1–12.
  • 28. Moad G. 2011. Chemical modification of starch by reactive extrusion. Progress in Polymer Science, 36(2), 218–237.
  • 29. Muazu R.I., Stegemann J.A. 2017. Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel, 194, 339–347.
  • 30. Mueller A., Sokolova S.N. , Vereshagin V.I. 2008. Characteristics of lightweight aggregates from primary and recycled raw materials. Construction and Building Materials, 22(4), 703–712.
  • 31. Oghbaei M., Mirzaee O. 2010. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 494, 175–189.
  • 32. Pietsch W.B. 2008. Agglomeration processes: Phenomena, technologies, equipment. John Wiley & Sons, pp. 622.
  • 33. Purohit P., Tripathi A.K., Kandpal T.C. 2006. Energetics of coal substitution by briquettes of agricultural residues. Energy, 31, 1321–1331.
  • 34. Rajgor M., Pitroda J. 2013. Stone sludge: Economical solution for manufacturing of bricks. International Journal of Innovative Technology and Exploring Engineering, 2(5), 16–20.
  • 35. Reynolds G.K., Fu J.S., Cheong Y.S., Hounslow M.J., Salman A.D. 2005. Breakage in granulation: A review. Chemical Engineering Science, 60(14), 3969–3992.
  • 36. Shanmugam S. 2015. Granulation techniques and technologies: Recent progresses. Bioimpacts, 5(1), 55–63.
  • 37. Sienkiewicz M., Janik H., Borzędowska-Labuda K., Kucińska-Lipka J. 2017. Environmentally friendly polymer-rubber composites obtained from waste tyres: A review. Journal of Cleaner Production, 147, 560–571.
  • 38. Taulbee D., Patil D.P., Honaker R.Q., Parekh B.K. 2009. Briquetting of coal fines and sawdust. Part I: Binder and briquetting-parameters evaluations. International Journal of Coal Preparation and Utilization, 29(1), 1–22.
  • 39. Temmerman M., Rabier F., Jensen P.D., Hartmann H., Böhm T. 2006. Comparative study of durability test methods for pellets and briquettes. Biomass and Bioenergy, 30, 964–972.
  • 40. Weyenberg W., Vermeire A., Vandervoort J., Remon J.P., Ludwig A. 2005. Effects of roller compaction settings on the preparation of bioadhesive granules and ocular mini-tablets. European Journal of Pharmaceutics and Biophar-maceutics, 59, 527–536.
  • 41. Yilmaz E. 2011. Advances in reducing large volumes of environmentally harmful mine waste rocks and tailings. Gospodarka Surowcami Mineralnymi, 27(2).
  • 42. Zainuddin M.I., Tanakaa S., Furushimaa R., Uematsu K. 2010. Correlation between slurry properties and structures and properties of granules. Journal of the European Ceramic Society, 30, 3291–3296.
  • 43. Zhang H.Y, Zhao Y.C., Qi J.Y. 2011. Utilization of municipal solid waste incineration (MSWI) fly ash in ceramic brick: Product characterization and environmental toxicity. Waste Management, 31(2), 331–341.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df726fcf-049f-4954-84f1-314471cb3a11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.