PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy effects during using the glass with different properties in a heated greenhouse

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of calculations conducted on a change of demand for thermal power in a greenhouse covered with standard garden glass and a low-emission glass. Changes of heat demand were also determined. Changes of the amount of fuel (fine coal size grade) as well as changes in the emission of pollutants to the atmosphere were estimated based on calculations. It was determined that covering a greenhouse with low-emission glass has a positive impact on decreasing heat demand.
Słowa kluczowe
Rocznik
Tom
Strony
351--360
Opis fizyczny
Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
  • Institute of Agriculture Engineering and Informatics, University of Agriculture in Kraków
Bibliografia
  • ABDEL-GHANY A.M., KOZAI T. 2006. On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer. Energy Conversion and Management, 47: 2612-2628.
  • AL-HELAL I.M., ABDEL-GHANY A.M. 2011. Energy partition and conversion of solar and thermal radiation into sensible and latent heat in a greenhouse under arid conditions. Energy and Buildings, 43: 1740-1747.
  • FIDAROS D.K., BAXEVANOU C.A., BARTZANAS T., KITTAS C. 2010. Numerical simulation of thermal behavior of a ventilated arc greenhouse during a solar day. Renewable Energy, 35: 1380-1386.
  • HEMMING S., KEMPKES F.L.K., MOHAMMADKHANI V. 2011. New glass coatings for high insulating greenhouses without light losses - energy saving crop production and economic potentials. Acta Horticulturae, 893: 217-226.
  • KURPASKA S. 2003. Modification of the technical equipment of the tunnel in terms of its foil heat demand. Problemy Inżynierii Rolniczej, 1: 39-46.
  • KURPASKA S. 2007. Greenhouses and plastic tunnels-engineering processes. PWRiL, Warszawa.
  • LEONIDOPOULOS G. 2000a. Greenhouse daily sun-radiation intensity variation, daily temperature variation and heat profits through the polymeric cover. Polymer Testing, 19: 813-820.
  • LEONIDOPOULOS G. 2000b. Greenhouse dimensions estimation and short time forecast of greenhouse temperature based on net heat losses through the polymeric cover. Polymer Testing, 19: 801-812.
  • LI S.,WILLITS D.H., BROWDY C.L., TIMMONS M.B., LOSORDO T.M. 2009. Thermal modeling of greenhouse aquaculture raceway systems. Aquacultural Engineering, 41: 1-13.
  • PISCIA D., MONTERO J.I., BAEZA E., BAILEY B.J. 2012. A CFD greenhouse night-time condensation model. Acta Horticulturae, 111: 141-154.
  • SONNEVELD P.J., HOLTERMAN H.J., SWINKELS A.M., VAN TUIJL B.A.J., BOT G.P.A. 2007. Greenhouse with an integrated conentrated PV system. Procc. 22nd Photovoltanic Solar Energy Conference, Milano.
  • STANGHELLINI C., DAI J., KEMPKES F. 2011. Effect of near-infrared-radiation reflective screen materials on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop. Acta Horticulturae, 110: 261-271.
  • SZARGUT J., ZIĘBIK A. 1995. Fundamentals of thermal energy (in Polish). WNT, Warszawa.
  • TEITEL M., BARAK M., ANTLER A. 2009. Effect of cyclic heating and a thermal screen on the nocturnal heat loss and microclimate of a greenhouse, Biosystems Engineering, 102: 162-170.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df6c16d5-0fac-4fcc-a60a-9aaf6aded92f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.