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Abstract This paper develops a new family of estimators, the minimum density
power divergence estimators, for the parameters of the Spherical Normal Distribu-
tion. This family contains the maximum likelihood estimator as a particular case.
The robustness is empirically illustrated through a Monte Carlo simulation study
and two biological numerical examples. Tools needed to implement these methods
are also provided.
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Abbreviations
The following abbreviations are used in this article:

vMF von Misses-Fisher (p. 44)
SN spherical normal (p. 44)
DPD density power divergence (p. 44)
MLE maximum likelihood estimator (p. 47)
RS random search (p. 49)
MAE mean absolute error (p. 50)
MEV mean estaimated value (p. 54)
HL Hodges-Lehmann (p. 57)

1. Introduction. Directional statistics is a major area of interest within
the field of statistics on Riemannian manifolds (Bhattacharya and Bhat-
tacharya (2012)). Maybe the most representative example is circular data,
which can be represented on the circunference of a unit circle as a point of S1,
as an angle α (measured in radians or degrees), as a unit vector (cosα, sinα) of
R2, or even as a complex number with unit modulus eiα. Circular data arise in
many diverse scientific fields such as medicine (Demir and Bilgin (2019)), bi-
ology (Landler et al. (2018)) or political science (Gill and Hangartner (2010)).
More generally, many examples in directional statistics involve observations
on the unit hypersphere Sp (Fisher (1993), Agostinelli (2007)).

Note that classical statistics applied to linear data are not valid for direc-
tional data because of their geometrical properties. For example, if we have
points in circular data, they can be expressed by their angle (in degrees)
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from 0◦ to 360◦, taking into account that 0◦ is identical to 3600. Moreover,
we have to determine the starting direction and the direction of rotation. In
this paper, we consider “East” and “counterclockwise”, respectively. On the
other hand, the arithmetic mean between two circular data points according
to the linear measure does not coincide with the geometrical mean. All these
difficulties make this problem challenging.

Let us consider data distributed on the unit sphere x ∈ Sp. Note that in
the case p = 1, we have circular data. The two most important distributions
used in literature to describe this type of data are the so called uniform and
von Misses-Fisher (vMF) distributions. Uniform distribution assigns equal
probabilities to all the points of the sphere

fUniformSp (x) = A−1
p−1 =

Γ(p2)

2πp/2
, (1)

where Ap−1 is the hypervolume or surface area of Sp−1 and Γ(·) is the standard
gamma function. The density function of the vMF distribution (Khatri and
Mardia (1977)) is given by

fvMF(x;µ, κ) = Cp+1(κ) exp(κµ
tx), (2)

where µ ∈ Sp and κ ∈ R+ are called the mean direction and concentration
parameter, respectively, and Cp(κ) is the normalizing constant given by

Cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
,

with Iν denoting the modified Bessel function of the first kind at order ν. If
p = 1 we have the von Misses distribution for circular data (Mardia and Zem-
roch (1975)). A considerable amount of literature has been published on vMF
distribution. See Bangert et al. (2010), among others. In the last years, some
extensions or alternatives to vMF distributions have been also developed.
See, for example Moghimbeygi and Golalizadeh (2021) for a generalization
of the vMF distribution, Kent (1982) for the Fisher-Bingham distribution or,
more recently, the Power Spherical distribution (De Cao and Aziz (2020)). In
this paper, we consider the Spherical Normal (SN) distribution presented in
Hauberg (2018).

Recent developments in the field of directional statistics have led to an
increasing interest in robustness of spherical data. See, for example, Ko and
Guttorp (1988), Collett (1980), Arellano-Valle et al. (2006), Agostinelli (2007)
and Laha and Mahesh (2011). In particular, Kato and Eguchi (2016) used
distance-based methods to develop robust estimators for the vMF distribu-
tion. Following this idea, we develop here a new family of robust estimators,
the minimum density power divergence (DPD) estimators, for the SN distri-
bution. The minimum DPD method for the estimation of the parameters of
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a distribution is well-known for its robustness (good behaviour in presence of
outliers), and it has been successfully applied in several distributions. In this
paper, we apply it to the SN distribution, emprically proving its robustness
and applicability through an extensive simulation study and two numerical
examples.

This paper is organized as follows: Section 2 introduces the SN distribu-
tion. In Section 3, we present the minimum DPD method as a generalization
of the maximum likelihood method for the estimation of the parameters. Sec-
tion 4 and Section 5 deal with the numerical results related to this research.
Finally, we conclude this paper in Section 6.

2. The SN distribution. Let us consider data distributed on the unit
sphere x ∈ Sp (i.e., x ∈ Rp+1 and ∥x∥2 = 1), and let us consider the geodesic
distance:

d2(x,y) = arcos2(x,y).

Definition 2.1 The density function of the SN distribution is given by

fSN (x;µ, λ) =
1

Zp(λ)
exp

(
−λ

2
d2(x,µ)

)
,

where µ ∈ Sp and λ ∈ R+ are called the location and concentration parame-
ters, respectively, and Zp(λ) is the normalizing constant given by

Zp(λ) =

∫
Sp

exp

(
−λ

2
d2(x,µ)

)
dx = Ap−1

∫ π

0
exp

(
−λr2

2

)
(sin(r))p−1dr,

where Ap−1 =
2πp/2

Γ( p
2
)

was the hypervolume or the surface area of Sp−1.

Note that the SN distribution is an instance of the Riemannian normal dis-
tribution (Pennec (2006)) that uses as the distance measure between two
points the arc-length of the shortest connecting curve on the sphere. This
distribution was formally presented in Hauberg (2018) and deeply studied in
You (2021) and You and Suh (2022). This last author developed the Riemann
package in the R statistical software. Through the function rspnorm(), we
can generate data from the SN distribution.

The parameter λ measures somehow the inverse of the variance of the
data, so a large λ leads to concentrated mass near µ and a small λ shows
greater dispersion of the mass. In particular, it can be seen that when the
concentration goes towards zero, the SN leads to the uniform distribution in
(1), i.e.:

lim
λ→0+

SN(µ, λ) = UniformSp .
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In Figure 1, we present the SN distribution over a sphere of dimension S2 for
different parameter values. Note that the spheres are slightly rotated for the
sake of illustration.

(a) µ = (0, 0, 1)T , λ = 10. (b) µ = (0, 0, 1)T , λ = 3.

(c) µ = (0, 0.8, 0.6)T , λ = 10. (d) µ = (0, 0,−1)T , λ = 3.

Figure 1: SN distribution in S2 for different parameter values.

One must not confound the term “spherical normal distribution” with
that used in literature to refer to a multivariate normal distribution which
components are mutually independent, unit normal random variables. A very
nice illustrative explanation of the use of the word “spherical” here is given
in Pratt et al. (1995) (Section 22.1). On the other hand, the determination
of the probability content of geometrically well-defined regions in Euclidean
N-space with this underlying distribution was discussed by Ruben (1960a,
1960b, 1961, 1962) and by Guenther and Terragno (1964), among others.

3. Estimation of parameters

3.1. Maximum Likelihood estimation. The log-likelihood function
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is given by

ℓ(µ, λ;x1, . . . ,xn) =
n∑

i=1

log fSN (xi;µ, λ) (3)

= −λ

2

n∑
i=1

d2(xi,y)− n logZp(λ).

Note that the second part of (3) does not depend on the concentration pa-
rameter λ. Therefore, we can give the following definition:

Definition 3.1 Let us consider the SN distribution. The maximum likeli-
hood estimator (MLE) of µ, µ̂MLE, is given by

µ̂MLE = argmax
µ∈Sp

− λ

2

n∑
i=1

d2(xi,y) = argmin
µ∈Sp

n∑
i=1

d2(xi,y).

Once µ̂MLE is computed, solving λ̂MLE reduces to

λ̂MLE = argmin
λ∈R+

λ

2

n∑
i=1

d2(xi,y) + n logZp(λ).

Hauberg (2018) proposed the steepest descent algorithm to estimate µ. As
noted there, it can also be computed in an online fashion by repeated geodesic
interpolation (Salehian et al. (2015)). On the other hand, You (2021) and You
and Suh (2022) made a comparison between Newton’s and Halley’s method to
estimate λ. Function mle.spnorm() in the cited Riemann package on R allows
us to compute these estimators.

3.2. Minimum DPD estimation. Let fθ be a parametric density with
θ ∈ Θ, and g the density underlying the data. The DPD between g and fθ is
given by

dβ(g, fθ) =

∫ {
1

β(1 + β)
g1+β − 1

β
gfβ

θ (x) +
1

1 + β
f1+β
θ (x)

}
dx, β > 0,

dβ=0(g, fθ) = lim
β→0

dβ(g, fθ) =

∫
g log(g/fθ(x))dx.

The minimum DPD estimator is given by

θ̂β = argmin
θ∈Θ

dβ(g, fθ).
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In the particular case of β = 0 it can be shown that it coincides with the MLE,
θ̂MLE. The minimum DPD estimator was originally presented in the work of
Basu et al. (1998) and, since then, it has been applied in many statistical
areas to develop robust estimation procedures.

Let consider here the SN distribution fSN (x;µ, λ). Here, our parameter
vector is θ = (µ, λ)T and, for β > 0:

dβ(g, fSN ) =

∫
Sp

{
1

β(1 + β)
g1+β − 1

β
gfβ

SN (x;µ, λ) +
1

1 + β
f1+β
SN (x;µ, λ)

}
.

But the term
∫
Sp g

1+β has no role in the minimization in (µ, λ) of dβ(g, fSN ).
Thus, if we want to obtain the minimum DPD estimator, we must minimize

1

1 + β

∫
Sp

f1+β
SN (x;µ, λ)dx− 1

β

∫
Sp

fβ
SN (x;µ, λ)dG(x).

We can estimate the second integral using the empirical distribution func-
tion based on a random sample of size n; x1, . . . ,xn; i.e, we must minimize,
for β > 0

1

1 + β

∫
Sp

f1+β
SN (x;µ, λ)dx− 1

β

1

n

n∑
i=1

fβ
SN (xi;µ, λ).

But

f1+β
SN (x;µ, λ) =

[
1

Zp(λ)
exp

(
−λ

2
d2(x,µ)

)]1+β

=
1

[Zp(λ)]1+β
exp

(
−λ(1 + β)

2
d2(x,µ)

)
=

Zp(λ(1 + β))

[Zp(λ)]1+β

1

Zp(λ(1 + β))
exp

(
−λ(1 + β)

2
d2(x,µ)

)
=

Zp(λ(1 + β))

[Zp(λ)]1+β
fSN (x;µ, (1 + β)λ),

so

∫
Sp

f1+β
SN (x;µ, λ)dx =

Zp(λ(1 + β))

[Zp(λ)]1+β

∫
Sp

fSN (x;µ, (1 + β)λ)dx =
Zp(λ(1 + β))

[Zp(λ)]1+β
.

Therefore, we can give the following definition
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Definition 3.2 Let us consider the SN distribution. The minimum DPD
estimator of (µ, λ), (µ̂β, λ̂β) is given by

(µ̂β, λ̂β) = argmin
µ∈Sp
λ∈R+

{
1

1 + β

Zp(λ(1 + β))

[Zp(λ)]1+β
− 1

β

1

n

n∑
i=1

fβ
SN (xi;µ, λ)

}
. (4)

If µ is known, solving λ̂β reduces to

λ̂β = argmin
λ∈R+

{
1

1 + β

Zp(λ(1 + β))

[Zp(λ)]1+β
− 1

β

1

n

n∑
i=1

fβ
SN (xi;µ, λ)

}
. (5)

While estimating the concentration parameter (5) reduces to the classical
optimization problem on R+ (we can use, for example, optimize() function
in R), estimating µ presents the additional difficult of restricting the para-
metric space to Sp. This could done through a penalty method. The idea is to
approximate the constrained problem (∥µ∥2 = 1) with an unconstrained one
and then apply standard search techniques to obtain solution. This approxi-
mation is done by adding a term to the objective function that prescribes a
high cost for violation of the constraints, see Bertsekas (1976).

Another option is to use a Random Search (RS) method. RS algorithms
are very common in Machine Learning and are particularly useful when
the objective function is not continuous or differentiable (see, for example,
Bergstra and Bengio (2012)). Starting in a random initial point on the para-
metric space, RS methods may iteratively move to better positions in the
search-space. A simple version applied to our problem in (4) can be the fol-
lowing:

STEP 1: Initialize µ0 = µMLE and λ0 = λMLE.

STEP 2: For i from 1 to N do:

Sample a new position µ1 in Sp. If

n∑
i=1

fβ
SN (xi;µ0, λ0) <

n∑
i=1

fβ
SN (xi;µ1, λ0)

then µ0 = µ1 and update λ0 by (5).

STEP 3: Return (µ̂β, λ̂β) = (µ0, λ0).

One of the main drawbacks of this approximation method is that we may
need a very large value of N to guarantee a precise solution, overall when p
is large.
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The asymptotic normality of the estimator could be shown from the M-
estimation theory. See Kato and Eguchi (2016) for an equivalent argument in
the vMF distribution.

4. Monte Carlo simulation study. We develop here a simulation study
to illustrate the robustness of the proposed methods. This study is devel-
oped in the R statistical software. The following packages are used: Riemann,
circular (Lund et al. (2017)) and Rfast (Papadakis et al. (2021)).

4.1. Known µ, unknown λ. Let us first assume that the location pa-
rameter µ is known in a sphere of dimension 2, S2. For different sample sizes,
n ∈ {20, 60, 100, . . . , 500}, we simulate data from the following six scenarios
(see Figure 2):

S.1: Pure data on the form SN(µ, λ), with µ = (0, 0, 1)T and λ = 10.

S.2: Contaminated data on the form (1 − ε)SN(µ, λ) + εUniformS2 , with
ε = 0.05.

S.3: Contaminated data on the form (1 − ε)SN(µ, λ) + εUniformS2 , with
ε = 0.10.

S.4: Contaminated data on the form (1−ε)SN(µ, λ)+εSN(µ, λ̃), with λ̃ = 3
and ε = 0.05.

S.5: Contaminated data on the form (1− ε)SN(µ, λ)+ εSN(µ̃, λ̃), with µ̃ =
(0, 1, 0)T , λ̃ = 3 and ε = 0.05.

S.6: Contaminated data on the form (1 − ε)SN(µ, λ) + εvMF(µ̃, k), with
µ̃ = (0, 0.8, 0.6)T , k = 3 and ε = 0.05.

For each scenario, we compute the minimum DPD estimator of λ for
β ∈ {0, 0.2, 0.4, 0.6} (note that β = 0 corresponds to the MLE). The mean
absolute error (MAE) is then computed by

MAE(β) =
1

S

S∑
s=1

∣∣∣λ̂(s)
β − λ

∣∣∣ ,
where S = 1, 000 is the number of samples used in the simulation. Results are
presented in Figure 3. When considering a pure scenario, MLE slightly out-
performs minimum DPD estimators. On the other hand, in all the alternative
contamination scenarios, minimum DPD scenarios present a much more ro-
bust behaviour than classical MLE. Only in Scenario 4, this difference is not
so extreme, as the contaminating distribution only differs in the dispersion
parameter. However, minimum DPD estimators also outperform MLE in this
case.
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(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

(d) Scenario 4. (e) Scenario 5. (f) Scenario 6.

Figure 2: Scenarios in the simulation study for known µ, unknown λ. Blue
points represent pure data and red points represent outliers. Data simulated
with n = 500.

We next study how the degree of contamination on the parameter λ affects
to its estimation. Let us consider the contamination scenario (1−ε)SN(µ, λ)+
εSN(µ, λ̃), for ε ∈ {0.05, 0.1} and n ∈ {60, 100, 200}. The degree of contami-
nation of λ is measured as

τ =
λ− λ̃

λ
,

for λ̃ ∈ {10, 9, . . . , 1}. This way, when λ̃ = λ = 10, τ = 0 and we are consider-
ing a pure scheme. As greater is the value of τ , stronger is this contamination.
Results are presented in Figure 4, illustrating again the robustness for the
proposed estimators.

4.2. Unknown µ, unknown λ. Let us now consider the case in which
both location and dispersion parameters are unknown. Let us consider µ =
(1, 0)T and λ = 10. To illustrate the behaviour of the proposed estimators we
consider two contamination scenarios in S1 (see Figure 2).

S.1: Contaminated data on the form (1− ε)SN(µ, λ)+ εSN(µ̃, λ̃), with µ̃ =
(−0.6, 0.8)T , λ̃ = 12 and ε = 0.05.
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(c) Scenario 3.
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(d) Scenario 4.
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(e) Scenario 5.
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(f) Scenario 6.

Figure 3: Scenarios in the simulation study for known µ, unknown λ. Mean
absolute errors (MAEs).
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(a) n = 60, ε = 0.05.

● ● ● ● ●
●

●

●

●

●

1

2

3

0.00 0.25 0.50 0.75
τ

M
A

E

● 0 0.2 0.4 0.6

(b) n = 60, ε = 0.10.
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(c) n = 100, ε = 0.05.
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(d) n = 100, ε = 0.10.
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(e) n = 200, ε = 0.05.
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(f) n = 200, ε = 0.10.

Figure 4: Scenarios in the simulation study for known µ, unknown λ. Mean
absolute errors (MAEs).
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S.2: Contaminated data on the form (1− ε)SN(µ, λ)+ εSN(µ̃, λ̃), with µ̃ =
(1, 0)T , λ̃ = 3 and ε = 0.05.

(a) Scenario 1. (b) Scenario 2.

Figure 5: Scenarios in the simulation study for unknown µ, unknown λ. Blue
points represent pure data and red squares represent outliers. Data simulated
with n = 60.

For each scenario, we compute the minimum DPD estimators of µ and λ
for β ∈ {0, 0.2, 0.4, 0.6} and n ∈ {60, 80, 100} with the RS algorithm based
on N = 104 points. Mean estimated values (MEVs) and MAEs are then com-
puted and results are presented in Table 1 and Table 2, respectively. The
effect of the contamination on λ is again very clear. However, the effect on
the estimation of µ is not so clear. In fact, although this estimation is affected
with the contamination, it remains very near to the true value. These results
are in concordance with previous literature. See Kato and Eguchi (2016).

5. Numerical examples. Let us illustrate the robust behaviour of the
proposed estimators through the study of two classical data sets in S1.

Example 5.1 (Sardinian sea stars) These data, presented in Fisher (1993)
represent the directions of 22 Sardinian sea stars 11 days after being displaced
from their natural habitat. These directions are presented (in degrees) in the
left of Figure 6 and they can be treated as points in S1. As it is seen in
the plot, there is one observation (147◦) surprisingly remote from the others.
This point has been shown to be a real outlier in Fisher (1993) and Kato and
Eguchi (2016), among others.
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Table 1: Scenarios in the simulation study for unknown µ, unknown λ. MEVs.

Scenario 1 Scenario 2

Param. Value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

n = 60

λ 10 3.27371 11.75964 11.40701 10.89353 3.78810 11.29220 11.37552 10.88994

µ1 1 0.99949 0.99880 0.99728 0.99728 0.99960 0.99880 0.99728 0.99728

µ2 0 -0.03127 -0.04862 -0.07333 -0.07331 -0.02749 -0.04862 -0.07333 -0.07331

n = 80

λ 10 3.01664 10.02490 10.32019 10.08790 5.45611 8.03600 9.66097 9.90902

µ1 1 0.99999 0.99990 0.99853 0.99853 0.99996 0.99990 0.99880 0.99853

µ2 0 0.00149 -0.01404 -0.05411 -0.05411 0.00822 -0.01404 -0.04872 -0.05411

n = 100

λ 10 2.83623 10.06420 10.22507 10.01820 4.29350 8.75831 9.87675 9.91226

µ1 1 0.99996 0.99999 0.99933 0.99880 0.99983 0.99997 0.99933 0.99880

µ2 0 0.00873 -0.00334 -0.03650 -0.04872 0.01810 -0.00672 -0.03650 -0.04872

Table 2: Scenarios in the simulation study for unknown µ, unknown λ. MAEs.

Scenario 1 Scenario 2

Param. Value 0 0.2 0.4 0.6 0 0.2 0.4 0.6

n = 60

λ 10 6.72629 1.75964 1.40701 0.89353 6.21190 1.29820 1.37552 0.88994

µ1 1 0.00051 0.00120 0.00272 0.00272 0.00040 0.00120 0.00272 0.00272

µ2 0 0.03167 0.04899 0.07366 0.07368 0.02793 0.04899 0.07366 0.07368

n = 80

λ 10 6.98336 0.02988 0.32356 0.09125 4.54389 1.96400 0.33903 0.09098

µ1 1 0.00001 0.00010 0.00147 0.00147 0.00004 0.00010 0.00120 0.00147

µ2 0 0.00149 0.01429 0.05427 0.05427 0.00822 0.01429 0.04889 0.05427

n = 100

λ 10 7.16377 0.06690 0.22630 0.01961 5.70650 1.24169 0.12325 0.08774

µ1 1 0.00004 0.00001 0.00067 0.00120 0.00017 0.00003 0.00067 0.00120

µ2 0 0.00873 0.00359 0.03667 0.04889 0.01810 0.00697 0.03667 0.04889



56 Robust Estimation of the SN Distribution

Example 5.2 (Northern cricket frogs) These data contain the ori-
entation of 14 northen cricket frogs after 30 hours enclosure within a dark
environmental chamber. Originally appeared in Ferguson et al. (1967) to in-
vestigate the homing ability of this type of frog, these data were presented in
Collett (1980) to illustrate outliers in circular data. Taking the north as 0◦, the
orientations are presented in the right of Figure 6. As noted by Collett (1980),
there is one observation (316◦) which clearly represents an outlier.

(a) Sardinian sea stars dataset. (b) Northern cricket frogs dataset.

Figure 6: Examples over S1 (in degrees). Blue points represent regular obser-
vations and red squares represent possible outliers.

MLEs for the parameters in the full data and for the data excluding
the potential outlier, are obtained jointly with minimum DPD estimators for
different values of the tuning parameter β. Results are presented in Table 3.
When comparing MLE for the full datasets and for the datasets excluding the
one sample, the value of the location parameter µ is not highly affected, while
the estimation of the concentration parameter λ clearly differs. These results
are in concordance with these discussed in Section 4.2 and illustrate how
outliers do not influence the estimation of µ. The minimum DPD estimates
for moderate tuning parameter are more similar to the MLE for datasets
without outliers, implying their robustness, overall for the estimation of the
concentration parameter λ.

5.1. Choice of the optimal tuning parameter As derived from the
simulation study, the robustness of the minimum DPD estimator directly de-
pends on the chosen tuning parameter β. As a general advice, it seems that a
moderate choice of the tuning parameter would lead to a suitable balance be-
tween robustness and efficiency. However, a data-driven choice of β would be
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more helpful in practice. Several methods for that purpose have been discussed
in literature. The method proposed by Warwick and Jones (2005) consists of
minimizing the estimated mean squared error. However, this method needs of
the asymptotic variance-covariance matrix of the corresponding estimators,
which would require heavy computations. Further discussions can be found in
Sugasawa and Yonekura (2021) and in Castilla and Chocano (2023), among
others.

A possible approach may be that of choosing the tuning parameter which
minimizes the difference between the estimated mean angle and an empiri-
cal estimate of the angle. For definition and discussion of circular median see
Fisher (1993) . It can be computed in R through the function median.circular()
in the package circular. Another interesting measure to consider is the
Hodges-Lehmann (HL) median for circular data, proposed by Otieno (2002).
It can be implemented in R through the function medianHL.circular(). The
obtained medians and HL-medians are, respectively, −1.14 and 2.59 (sea stars
data) and 137.00 and 137.00 (frogs data). Therefore, for the frogs data, β = 1
would be chosen as the optimal tuning parameter, while for the sea stars
data, β = 1 or β = 0.2 would be chosen as the optimal tuning parameter,
depending the median statistic considered. This is in concordance with the
presence of outliers previously noted.

Table 3: Sea Stars and Frogs data. MLE estimator for the full data (MLE)
for the data without the potential outlier observation (MLE(1)) and minimum
DPD estimators for the full data and different tuning parameter β. Here α̂
represents the estimated angle (in degrees).

Sardinian sea stars dataset Northern cricket frogs dataset

Estimator λ̂ µ̂1 µ̂2 α̂ Estimator λ̂ µ̂1 µ̂2 α̂

MLE 2.117 0.9985 0.0541 3.10 MLE 1.089 -0.8288 0.5596 145.97

MLE(1) 5.175 0.9997 0.0232 1.33 MLE(1) 3.337 -0.8200 0.5724 145.08

β =0.1 3.064 0.9962 0.0867 4.97 β =0.1 1.405 -0.8995 0.4370 154.09

β =0.2 4.689 0.9989 0.0462 2.65 β =0.2 2.002 -0.8631 0.5051 149.66

β =0.3 5.224 0.9994 0.0357 2.04 β =0.3 2.533 -0.8256 0.5642 145.65

β =0.4 5.381 0.9993 0.0373 2.14 β =0.4 2.615 -0.8036 0.5952 143.47

β =0.5 5.467 0.9993 0.0386 2.21 β =0.5 2.580 -0.7921 0.6104 142.38

β =0.6 5.536 0.9992 0.0389 2.23 β =0.6 2.531 -0.7825 0.6226 141.49

β =0.7 5.599 0.9993 0.0386 2.21 β =0.7 2.491 -0.7733 0.6340 140.65

β =0.8 5.659 0.9993 0.0373 2.14 β =0.8 2.468 -0.7634 0.6459 139.77

β =0.9 5.719 0.9994 0.0358 2.05 β =0.9 2.466 -0.7527 0.6583 138.83

β =1 5.782 0.9994 0.0338 1.94 β =1 2.490 -0.7410 0.6715 137.82

6. Concluding remarks In this paper we have developed a new family
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of distance-based estimators, the minimum DPD estimators, for the param-
eters of the SN distribution, introduced by Hauberg (2018). This way, we
apply a very well-known robust method for the estimation of the parameters
to a distribution on the sphere. This family of estimators depends on a tuning
parameter β ≥ 0. When β = 0, we have the classical MLE. It is empirically
shown that increasing β leads to more robust estimation, with an unavoid-
able loss of efficiency. This effect is seen on the estimation of the concentration
parameter λ, which is more affected by the presence of outliers.

This study is limited to the definition and application of the new family
of estimators. Further study should show the asymptotical behaviour of the
proposed estimators. On the other hand, further research should be under-
taken to explore how to choose the optimal tuning parameter. Additionally,
we hope to develop an appropriate R package in future for a wider range of
practitioners to enhance the practical applications of the proposed method-
ologies.
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Odporna estymacja parametrów sferycznego rozkładu normalnego.
Elena Castilla

Streszczenie Artykuł przedstawia nową rodzinę estymatorów parametrów sferycz-
nego rozkładu normalnego minimalnej dywergencji. Ta rodzina obejmuje estymator
największej wiarygodności jako przypadek szczególny. Odporność tych estymatorów
jest zilustrowana empirycznie przez badanie symulacyjne Monte Carlo. Zamieszczone
przykłady dla danych rzeczywistych dotyczą zagadnień z biologii. Pokazano również
narzędzia potrzebne do wdrożenia tych metod.
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