PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of Solar Water Disinfection Using Nanocatalysts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar water disinfection (SODIS) is a simple and low-cost method of increasing water quality. However, it takes about 6 hours of exposure to solar radiation. The elimination of harmful pathogenic germs from drinking water can be accelerated using a combination of sun disinfection and nanotechnology. In this study, a hybrid water purification technique using solar water disinfection, Titanium Oxide (TiO2), and natural mineral clays was investigated. TiO2, natural kaolin clay nanoparticles, and a mixture of TiO2 and natural clay were added to contaminated wastewater containers at different concentrations. After that, the containers were exposed to sun light for different time intervals. Samples were then collected from all tests to measure the total counts of Total Coliform and Escherichia coli (E. coli) using the IDEXX system. The results showed that the addition of TiO2 and natural kaolin clay to wastewater with solar water disinfection reduced the total count of the pathogenic microorganisms and decreased the time needed time for the disinfection process compared to using solar energy alone. The results also showed that the optimum concentration of the TiO2, which yielded the shortest purification time and lowest levels of pathogenic microorganisms, was 0.006 g/ml. In co ntrast, the most effective concentratio n of natural clay was 0.0015 g/ml. Moreover, the results showed that the optimum concentration of the mixture of TiO2 and natural clay, which speeds up the purification time an d lowest the level of pathogen ic microorganisms was 0.006 g/ml for TiO2 and 1.2 g/ml for the natural clay.
Rocznik
Strony
14--20
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Renewable Energy Technology Department, Applied Science Private University, Amman, Jordan
  • School of Engineering, Department of Mechanical Engineering, The University of Jordan, Amman 11942, Jordan
  • School of Engineering, Department of Mechanical Engineering, The University of Jordan, Amman 11942, Jordan
  • Department of Mechanical Engineering, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
  • Department of Alternative Energy Technology, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
Bibliografia
  • 1. Aboushi, A., Hamdan, M., Abdelhafez, E., Turk, E., Ibbini, J., Abu Shaban, N. 2019. Water disinfection by Solar Energy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(17), 2088–2098. https://doi.org/10.1080/15567036.2019.1666182
  • 2. Agnihotri, S., Mukherji, S., Mukherji, S. 2013. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5(16), 7328. https://doi.org/10.1039/c3nr00024a
  • 3. Duarte, A.A., Amorim, M.T. 2017. Photocatalytic treatment techniques using titanium dioxide nanoparticles for antibiotic removal from water. Application of Titanium Dioxide. https://doi.org/10.5772/intechopen.69140
  • 4. Ge, M., Cao, C., Huang, J., Li, S., Chen, Z., Zhang, K.-Q., Al-Deyab, S.S., Lai, Y. 2016. A review of one-dimensional tio2nanostructured materials for environmental and Energy Applications. Journal of Materials Chemistry A, 4(18), 6772–6801. https://doi.org/10.1039/c5ta09323f
  • 5. Hamdan, M., Darabee, S. 2017. Enhancement of Solar Water Disinfection using Nanotechnology. I nt. J. of Thermal & Environmental Engineering, 15(2), 111–116.
  • 6. Ibrahim, K.M., Alzughoul, K., Muhtaseb, M. 2016. New occurrence of potential phosphate resource in northeast Jordan. Arabian Journal of Geosciences, 9(7). https://doi.org/10.1007/s12517-016-2508-5
  • 7. Keane, D.A., McGuigan, K.G., Ibáñez, P.F., Polo-López, M.I., Byrne, J.A., Dunlop, P.S., O’Shea, K., Dionysiou, D.D., Pillai, S.C. 2014. Solar photocatalysis for water disinfection: Materials and reactor design. Catal. Sci. Technol., 4(5), 1211–1226. https://doi.org/10.1039/c4cy00006d
  • 8. Koslowski, L.A., Nogueira, A.L., Licodiedoff, S., Comper, A.T., Folgueras, M.V. 2018. Silver nanoparticles impregnated with polyamide-66 to disinfect drinking water. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 13(6), 1. https://doi.org/10.4136/ambi-agua.1947
  • 9. Kumar, S., Ahlawat, W., Bhanjana, G., Heydarifard, S., Nazhad, M.M., Dilbaghi, N. 2014. Nanotechnology-based water treatment strategies. Journal of Nanoscience and Nanotechnology, 14(2), 1838–1858. https://doi.org/10.1166/jnn.2014.9050
  • 10. Liu, C., Kong, D., Hsu, P.-C., Yuan, H., Lee, H.-W., Liu, Y., Wang, H., Wang, S., Yan, K., Lin, D., Maraccini, P.A., Parker, K.M., Boehm, A.B., Cui, Y. 2016. Rapid water disinfection using vertically aligned mos2 nanofilms and visible light. Nature Nanotechnology, 11(12), 1098–1104. https://doi.org/10.1038/nnano.2016.138
  • 11. Lydakis-Simantiris, N., Riga, D., Katsivela, E., Mantzavinos, D., Xekoukoulotakis, N.P. 2010. Disinfection of spring water and secondary treated municipal wastewater by TIO2 photocatalysis. Desalination, 250(1), 351–355. https://doi.org/10.1016/j.desal.2009.09.055
  • 12. Utami, F.D., Rahman, D.Y., Sutisna, Kamirul, Margareta, D.O., Abdullah, M. 2019. Photocatalyst based on tio2 and its application in organic wastewater treatment using simple spray method. Journal of Physics: Conference Series, 1204, 012086. https://doi.org/10.1088/1742-6596/1204/1/012086
  • 13. Wang, H., Zhou, P., Wang, J., Wang, Y., Wei, J., Zhan, H., Guo, R., Zhang, Y. 2018. Synthesis and characterization of rectorite/zno/tio2 composites and their properties of adsorption and photocatalysis for the removal of methylene blue dye. Journal of Wuhan University of Technology-Mater. Sci. Ed., 33(3), 729–735. https://doi.org/10.1007/s11595-018-1885-x
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df69556f-55f2-4422-89f6-04563bc21a4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.