Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents an analysis of energy consumption in a Plug-in Hybrid Electric Vehicle (PHEV) used in actual road conditions. Therefore, the paper features a comparison of the consumption of energy obtained from fuel and from energy taken from the vehicle’s batteries for each travel with a total distance of 5000 km. The instantaneous energy consumption per travelling kilometre in actual operating conditions for a combustion engine mode are within the range of 233 to 1170 Wh/km and for an electric motor mode are within the range of 135 to 420 Wh/km. The average values amount to 894 Wh/km for the combustion engine and 208 Wh/km for the electric motor. The experimental data was used to develop curves for the total energy consumption per 100km of road section travelled divided into particular engine types (combustion/electric), demonstrating a close correlation to actual operating conditions. These values were referred to the tested passenger vehicle’s approval data in a WLTP test, with the average values of 303 Wh/km and CO2 emission of 23 g/km.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
636--645
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
autor
- Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
autor
- Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
autor
- Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
autor
- Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
autor
- University of Warmia and Mazury, ul. Słoneczna 46A, 10-710 Olsztyn, Poland
Bibliografia
- 1. Barth M, Boriboonsomsin K. Real-world carbon dioxide impacts of traffic congestion. Transportation Research Record 2008; (2058): 163-171.
- 2. Barth M, Boriboonsomsin K. Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transportation Research Part D: Transport and Environment 2009; 14(6): 400-410, https://doi.org/10.1016/j.trd.2009.01.004.
- 3. Becker T, Sidhu I, Tenderich B. Electric vehicles in the United States: a new model with forecasts to 2030. Center for Entrepreneurship and Technology, University of California, Berkeley, 2009: 36.
- 4. Bieniek A, Graba M, Hennek K, Mamala J. Analysis of fuel consumption of a spark ignition engine in the conditions of a variable load. MATEC Web of Conferences, 2017, https://doi.org/10.1051/matecconf/201711800036.
- 5. Bleek R. Design of a Hybrid Adaptive Cruise Control Stop- & -Go system. Engineering 2007.
- 6. Bokare PS, Maurya AK. Acceleration-Deceleration Behaviour of Various Vehicle Types. Transportation Research Procedia 2017; 25: 4733-4749, https://doi.org/10.1016/j.trpro.2017.05.486.
- 7. Chłopek Z. Research on energy consumption by an electrically driven automotive vehicle in simulated urban conditions. Eksploatacja i Niezawodnosc 2013; 15(1): 75-82.
- 8. Eder LV, Nemov VY. Forecast of energy consumption of vehicles. Studies on Russian Economic Development 2017; 28(4): 423-430, https://doi.org/10.1134/S1075700717040049.
- 9. Ehsani M, Gao Y, Emadi A. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles. CRC Press: 2017, https://doi.org/10.1201/9781420054002.
- 10. Eisele WL, Turner SM, Benz RJ. Using Acceleration Characteristics in Air Quality and Energy Consumption Analyses Texas Transportation Institute The Texas A & M University System College Station , Texas 77843-3135 Southwest Region University Transportation Center Texas Transportation In. 1996.
- 11. Energy U S D of. Where the Energy Goes: Electric Cars. https://www.fueleconomy.gov/FEG/atv.shtml 2020.
- 12. Fontaras G, Franco V, Dilara P et al. Development and review of Euro 5 passenger car emission factors based on experimental results over various driving cycles. Science of the Total Environment 2014; 468-469: 1034-1042.
- 13. Fontaras G, Zacharof N G, Ciuffo B. Fuel consumption and CO2 emissions from passenger cars in Europe - Laboratory versus real-world emissions. Progress in Energy and Combustion Science 2017; 60: 97-131, https://doi.org/10.1016/j.pecs.2016.12.004.
- 14. Graba M, Mamala J, Bieniek A, Sroka Z. Impact of the acceleration intensity of a passenger car in a road test on energy consumption. Energy 2021; 226: 120429, https://doi.org/10.1016/j.energy.2021.120429.
- 15. He H, Cao J, Cui X. Energy optimization of electric vehicle's acceleration process based on reinforcement learning. Journal of Cleaner Production 2020; 248(ICEEE): 1-5.
- 16. Hong H, Che Mohamad NAR, Chae K et al. The lithium metal anode in Li-S batteries: challenges and recent progress. Journal of Materials Chemistry A 2021; 9(16): 10012-10038, https://doi.org/10.1039/D1TA01091C.
- 17. International Energy Agency. Energy Technology Perspectives 2017 - Executive Summary. 2017, https://doi.org/10.1787/energy_tech-2014-en.
- 18. Kitayama S, Saikyo M, Nishio Y, Tsutsumi K. Torque control strategy and optimization for fuel consumption and emission reduction in parallel hybrid electric vehicles. Structural and Multidisciplinary Optimization 2015; 52(3): 595-611, https://doi.org/10.1007/s00158-015-1254-8.
- 19. Kropiwnicki J. A unified approach to the analysis of electric energy and fuel consumption of cars in city traffic. Energy 2019; 182: 1045-1057, https://doi.org/10.1016/j.energy.2019.06.114.
- 20. Kropiwnicki J. Ocena efektywności energetycznej pojazdów samochodowych z silnikami spalinowymi. Wydawnictwo PG, Gdańsk 2011.
- 21. Kropiwnicki J, Furmanek M. Analysis of the regenerative braking process for the urban traffic conditions. Combustion Engines 2019; 178(3): 203-207, https://doi.org/10.19206/CE-2019-335.
- 22. Kum D, Peng H, Bucknor NK. Fuel and Emissions Reduction. Journal of Dyanmic Systems Measurement and Control 2010; 2010(April): 1-18.
- 23. Kural E, Hacıbekir T, Güvenç B A. State of the art of adaptive cruise control and stop and go systems. arXiv 2020.
- 24. Lee J, Nelson D J, Lohse-Busch H. Vehicle inertia impact on fuel consumption of conventional and hybrid electric vehicles using acceleration and coast driving strategy. SAE Technical Papers 2009, https://doi.org/10.4271/2009-01-1322.
- 25. Li Q, Chen W, Li Y et al. Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic. International Journal of Electrical Power and Energy Systems 2012; 43(1): 514-525, https://doi.org/10.1016/j.ijepes.2012.06.026.
- 26. Limblici C. Investigation of engine concepts with regard to their potential to meet the Euro 7 emission standard using 1D-CFD software. 2020.
- 27. Liu T, Tang X, Wang H et al. Adaptive Hierarchical Energy Management Design for a Plug-In Hybrid Electric Vehicle. IEEE Transactions on Vehicular Technology 2019; 68(12): 11513-11522, https://doi.org/10.1109/TVT.2019.2926733.
- 28. Mamala J, Graba M, Praznowski K, Hennek K. Control of the effective pressure in the cylinder of a Spark-Ignition engine by electromagnetic valve actuator. SAE Technical Papers 2019, https://doi.org/10.4271/2019-01-1201.
- 29. Mamala J, Śmieja M, Prażnowski K. Analysis of the total unit energy consumption of a car with a hybrid drive system in real operating conditions. Energies 2021, https://doi.org/10.3390/en14133966.
- 30. Mercedes-Benz. Mercedes me media. https://media.mercedes-benz.com/ .
- 31. Mercedes-Benz. A250e homologation certificate. 2020: 1-30.
- 32. Merkisz J, Pielecha J, Radzimirski S. New Trends in Emission Control in the European Union. Cham, Springer International Publishing: 2014, https://doi.org/10.1007/978-3-319-02705-0.
- 33. Merkisz J, Rymaniak Ł. The assessment of vehicle exhaust emissions referred to CO2 based on the investigations of city buses under actual conditions of operation. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19(4): 522-529, https://doi.org/10.17531/ein.2017.4.5.
- 34. Pielecha I, Cieślik W, Szałek A. Operation of electric hybrid drive systems in varied driving conditions. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(1): 16-23, https://doi.org/10.17531/ein.2018.1.3.
- 35. Pielecha I, Pielecha J. Simulation analysis of electric vehicles energy consumption in driving tests. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22(1): 130-137, https://doi.org/10.17531/ein.2020.1.15.
- 36. Pitanuwat S, Sripakagorn A. An Investigation of Fuel Economy Potential of Hybrid Vehicles under Real-World Driving Conditions in Bangkok. Elsevier B.V.: 2015, https://doi.org/10.1016/j.egypro.2015.11.607.
- 37. Prochowski L. Movements Mechanics - Mechanika Ruchu. Warsaw, WKiŁ: 2016.
- 38. Qiu S, Qiu L, Qian L, Pisu P. Hierarchical energy management control strategies for connected hybrid electric vehicles considering efficiencies feedback. Simulation Modelling Practice and Theory 2019; 90: 1-15, https://doi.org/10.1016/j.simpat.2018.10.008.
- 39. Raport. Electric Vehicle Market - Global Opportunity Analysis and Industry Forecast, 2020-2027. Allied Market Research 2020: 256.
- 40. Rill G. Road Vehicle Dynamics: Fundamentals and Modeling - 1st Edition. CRC Press: 2011.
- 41. Schudeleit M, Küçükay F. Emission-robust operation of diesel HEV considering transient emissions. International Journal of Automotive Technology 2016; 17(3): 523-533, https://doi.org/10.1007/s12239-016-0053-6.
- 42. Siłka W. Energy consumption of car movement. Energochłonność ruchu samochodu. WNT: 1997.
- 43. Spalding S. RACQ Congested Roads Report : The Effects on Fuel Consumption and Vehicle Emissions Prepared by RACQ Vehicle Technologies Department. RACQ 2008; (07): 1-9.
- 44. Stanton NA, Dunoyer A, Leatherland A. Detection of new in-path targets by drivers using Stop & Go Adaptive Cruise Control. Applied Ergonomics 2011; 42(4): 592-601, https://doi.org/10.1016/j.apergo.2010.08.016.
- 45. Thomas J. Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results. SAE International Journal of Passenger Cars - Mechanical Systems 2014; 7(4): 1374-1384, https://doi.org/10.4271/2014-01-2562.
- 46. Thomas J, Huff S, West B, Chambon P. Fuel Consumption Sensitivity of Conventional and Hybrid Electric Light-Duty Gasoline Vehicles to Driving Style. SAE International Journal of Fuels and Lubricants 2017, https://doi.org/10.4271/2017-01-9379.
- 47. Xiong R, Duan Y, Cao J, Yu Q. Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle. Applied Energy 2018, https://doi.org/10.1016/j.apenergy.2018.02.128.
- 48. Yeo H, Hwang S, Kim H. Regenerative braking algorithm for a hybrid electric vehicle with CVT ratio control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2006; 220(11): 1589-1600, https://doi.org/10.1243/09544070JAUTO304.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df67b073-7f21-4480-8218-11020d1f6397