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Abstract: Positive state controllability is the controllability of systems where the state is positive and the input remains in ℝn. Under some 

conditions, we established a relation between the reachability map of systems with only the positive state and the reachability map  
of a related positive system where the state and input are both positive. Using this connection, necessary and sufficient conditions  
are obtained for the positive state reachability of discrete linear time-invariant (LTI) systems, and then we deduced the positive state  

controllability. These conditions are evaluated over some numerical examples that support the theoretical results. 
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1. INTRODUCTION 

In control theory, the study of controllability has received much 
attention. A system is controllable if any initial state can be trans-
formed to any final state by a feasible control sequence. The 
concepts of reachability and null controllability are defined in the 
same manner as the controllability for the initial state equal to zero 
and the final state equal to zero, respectively. For linear discrete 
system, the controllability is equivalent to the reachability and 
implies the null controllability [16]. Kalman et al. [11] gave a for-
mulation of this concept, the full rank of the reachability matrix. 

The study of controllability considers neither any non-
negativity of the states nor that of the inputs of a system. Then, 
the problem explained for many applications, where the state 
and/or input variables necessarily take non-negative values. A 
positive linear system is the system where both the state and the 
input are always non-negatives (or positives). We can find these 
systems in many areas, such as compartmental biological sys-
tems, pharmacology, manufacturing, economics, telecommunica-
tions, manpower planning and others [1, 2, 3, 6, 13, 15, 17, 18, 
19, 20, 22]. The field study of the positive linear systems is restric-
tive compared with that of the linear systems, and this is due to 
the fact that the positive system is defined on the cone and not on 
the whole linear space. Thus, many important properties of the 
linear system are not applied to the positive linear system. Posi-
tive input controllability is the controllability of positive systems. 
This situation is treated in many textbooks and papers in the 
literature [4, 7, 9, 12, 16]. The study of Caccetta and Rumchev [4] 
demonstrates that the positive input controllability is equivalent to 
both positive input reachability and positive input null controllability 
at once (unlike the controllability of linear discrete systems). In the 
research of Valcher [21], it is proved that the positive input reach-
ability is equivalent to the positive input reachability set contained 

in the positive orthant ℝ+
n . A characterisation for positive input null 

controllability in finite (or infinite) time is given in Guiver et al. [10]. 
Positive state controllability is the controllability of linear sys-

tems where the state must be non-negative, and the input can 
take negative values. There are many papers where the system is 
suitable for describing the addition or removal of individuals from a 
population, and for a full description of these actions, we require 

that the control u can take negative values [8, 14]. The framework 
of positive state controllability puts the non-negativity constraint of 
the state on the cone, and not on the whole linear space, and it is 
not obvious that the positive input controllability theory is applica-
ble. 

Guiver et al. [10] studied that concept for discrete LTI sys-
tems. Their results for the positive state controllability (including 
reachability and null controllability) are based on the main result 

shown in Theorem 2.6. Theorem 2.6 shows that the non-negative 
state trajectories of a system (A, B) with possibly negative inputs 
are precisely the non-negative state trajectories of a related sys-
tem with non-negative inputs (the states stay non-negative, and 
the possibly negative inputs are observed as non-negative inputs, 
i.e. positive system). Additionally, a characterisation of nonnega-

tive inputs for the related system is given in Lemma 2.1. Using 
the Theorem 2.6, Guiver et al. [10] prove that under certain as-

sumptions the positive state controllability of system (A, B)  is 
equivalent to the positive input controllability of a related positive 
system. 

This paper is a generalisation of Guiver et al.’s study [10], 
where we enrich the research framework on the positive state 

controllability for discrete LTI systems. The main idea is to give a 
characterisation of positive state controllability based on the form 
of the reachability matrix for the system (A, B). Accordingly, we 
demonstrate that the positive state controllability of a system 

(A, B) with non-negative states and possibly negative inputs is 
equivalent to the positive input controllability of a related positive 
system. Besides, conditions for positive state controllability of the 

system (A, B) are developed and proved. These results indicate 
that there is no need for the related positive system (unlike the 
results derived in the study of Guiver et al. [10]) to check the 

positive state reachability of the system (A, B). Additionally, we 
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demonstrated positive state controllability for systems where A 
belongs to the class of Leslie matrices [5]. 

The remainder of this paper is structured as follows: Section 2 
presents a mathematical notation of the positive matrix; additional-
ly, we recall some definitions and proprieties about the theory of 
positive linear systems (controllability, reachability and null con-
trollability). In Section 3, we begin with the problem formulation 
and present the class of systems studied in this paper. In Subsec-

tion 3.1, the positive state reachability problem is stated for dis-
crete LTI  systems. Under some conditions, we prove that the 

reachability matrix of the system (A, B)  is equivalent to the 

reachability matrix of a related positive system. Subsections 3.2 
and 3.3, respectively, introduce necessary and sufficient condi-
tions for positive state null controllability and positive state control-

lability of discrete LTI systems. The final section is devoted to 
illustrate the obtained results in some examples and an applica-
tion from population dynamics. 

2. PRELIMINARILY RESULTS 

Notation: Denote by ℕ the set of integer numbers. ℝ+
∗  is the 

set of nonzero positive real numbers. Given a matrix A ∈ ℝn×n, 

the kernel and positive kernel of A, are, respectively, defined as 

kerA = {x ∈ ℝn|Ax = 0  and ker+A = {x ∈ ℝ+
n |Ax = 0} =

ℝ+
n ∩ kerA. The matrix A is Schur if |λ| < 1, for all λ ∈ σ(A). 

ei ∈ ℝ
n  is the i th standard basis vector of ℝn . A matrix A ∈

ℝ+
n×n  ( A ≥ 0 ) if for all i, j ∈ {1,2, … , n} , the components 

Ai,j ∈ ℝ+ (Ai,j ≥ 0 ). A vector v ∈ ℝ+
n  (v ≥ 0 ) if for all j ∈

{1,2, … , n}, the components vj ∈ ℝ+ (vj ≥ 0). A positive vector 

(row or column) is said to be monomial if all of its components are 

zero except for a single one that is positive. If v ∈ ℝ+
n  is a mono-

mial column, then v = cei for some c > 0 and i = 1,⋯ , n, and 

we can say that v is i-monomial. A matrix A ∈ ℝ+
n×n is said to be 

monomial if all its rows and columns are monomial. Further, a 
matrix A is said to be nilpotent if there exist p such that Ap = 0n, 

(A ∈ ℝn×n). 

Consider the discrete LTI system defined as follows:   

x(k + 1) = Ax(k) + Bu(k),    k ∈ ℕ,                             (1) 

where x ∈ ℝn , u ∈ ℝm , A ∈ ℝn×n  and B ∈ ℝn×m . The solu-

tion x(k), for some k ∈ ℕ, of the system (1) is given by: 

𝑥(𝑘) = 𝐴𝑘𝑥0 + [𝐵 𝐴𝐵 ⋯ 𝐴𝑘−1𝐵] [

𝑢(𝑘 − 1)
⋮

𝑢(1)

𝑢(0)

].          (2) 

In this section we give some definitions and characterisations 
about null controllability, reachability and controllability of positive 
discrete LTI systems [4, 7, 16].  

Definition 2.1 The system (1) is said to be positive if x(k) ≥ 0 

for any x0 ≥ 0 and all input sequences u(k) ≥ 0, k ∈ ℕ. 
Proposition 2.2 [9] The system (1) is positive if and only if 

A ≥ 0 and B ≥ 0.  

 Proposition 2.2 shows that, if x0 ∈ ℝ+
n  then x(k) ∈ ℝ+

n  for 
all k ∈ ℕ. 

In the rest of this section, we consider the system (1) as a 
positive system. 

Definition 2.3 Given a positive system (1), we say that 

xf ∈ ℝ+
n  is reachable in finite time if there exist k ∈ ℕ  and a 

control sequence [u(0) u(1) ⋯ u(k − 1)] ∈ ℝ+
m  that 

steers the state x ∈ ℝ+
n  of the system (1) from the origin to xf in 

k steps.  

The state trajectory x(k), for some k ∈ ℕ, of the positive sys-
tem (1) with x0 = 0 is given by: 

𝑥(𝑘) = 𝑅𝑘(𝐴, 𝐵)𝑈𝑘 , 

where 

𝑅𝑘(𝐴, 𝐵) = [𝐵 𝐴𝐵 ⋯ 𝐴𝑘−1𝐵]  𝑎𝑛𝑑  𝑈𝑘 = [

𝑢(𝑘 − 1)
⋮

𝑢(1)

𝑢(0)

]. 

We recall that Rk(A, B) is the reachability matrix at time k of 

the positive system (1). The set of all reachable states xf at time k 
is defined as follows:  

ℜ𝑘(𝐴, 𝐵) = {𝑥𝑓 ∈ ℝ+
𝑛 ∶  𝑥𝑓 = 𝑅𝑘(𝐴, 𝐵)𝑈𝑘 ,   𝑈𝑘 ∈ ℝ+

𝑚𝑘}. 

We define also ℜ∞(A, B) as the set of all reachable positive 
states in finite time, with positive inputs, i.e.  

ℜ∞(𝐴, 𝐵) =⋃ 

∞

𝑘=1

ℜ𝑘(𝐴, 𝐵). 

Thus, the positive system (1) is reachable if ℜ∞(A, B) =
ℝ+
n . The following corollary is a characterisation of the reachability 

of the positive system (1) [21].  
Corollary 2.4 [21] The positive system (1) is reachable if and 

only if for some k ∈ ℕ, Rk(A, B) contains an n × n  monomial 
sub-matrix.  

Definition 2.5 Given a positive system (1), we say that 
xf ∈ ℝ+

n  is reachable in infinite time if for x(0) = 0, there exists 

an infinite control sequence u ∈ ℝ+
m such that the state x(k) of 

the positive system (1) satisfies x(k) → xf for k → +∞.  
Definition 2.6 Given a positive system (1), we say that 

x0 ∈ ℝ+
n  is null controllable in finite time if there exist k ∈ ℕ and 

a control sequence [u(0) u(1) ⋯ u(k − 1)] ∈ ℝ+
m  that 

steers the state x ∈ ℝ+
n  of the system (1) from x0 to the origin in 

k steps. 

If xf = 0, then the state x(k) of the positive system (1) be-
comes as follows: 

−𝐴𝑘𝑥0 = 𝑅𝑘(𝐴, 𝐵)𝑈𝑘 . 

Since Rk(A, B)Uk ≥ 0 and Akx0 ≥ 0, then this is possible 

if there is k = 1,2,⋯, such that Ak = 0n . Thus, the state can 
reach the origin. 

Definition 2.7 Given a positive system (1), we say that 

x0 ∈ ℝ+
n  is null controllable in infinite time if there exists an infi-

nite control sequence u ∈ ℝ+
m  such that the state x(k)  of the 

positive system (1) can reach the origin for k → +∞. 
The following corollary is a characterisation of the null control-

lability of the positive system (1). 
Corollary 2.8 [10] 

1. The positive system (1) is null controllable in finite time if A is 

nilpotent.  

2. The positive system (1) is null controllable in infinite time if A 

is Schur. 

Definition 2.9  We say that the positive system (1) is controlla-

ble in finite time if for all x0, xf ∈ ℝ+
n , there exist k ∈ ℕ and a 

control sequence [u(0) u(1) ⋯ u(k − 1)] ∈ ℝ+
m  that 

steers the state x ∈ ℝ+
n  of the system (1) from x0  to xf  in k 

steps.  
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Definition 2.10 Given a positive system (1), we say that 

xf ∈ ℝ+
n  is controllable in infinite time if for all x(0) ∈ ℝ+

n , there 

exists an infinite control sequence u ∈ ℝ+
m  such that the state 

x(k) of the positive system (1) satisfies x(k) → xf for k → +∞.  
The following corollary is a characterisation of the controllabil-

ity of the positive system (1). 
Corollary 2.11 [4] The positive system (1) is controllable in in-

finite - or finite - time if and only if it is both null controllable and 
reachable in infinite - or finite - time.  

3. PROBLEM FORMULATION AND MAIN RESULTS 

Consider the discrete LTI system defined as follows:  

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘),                                                  (3) 

where A ∈ ℝ+
n×n , B ∈ ℝ+

n×m  and the state x ∈ ℝ+
n , with 

u ∈ ℝm. 
This section aims to study the controllability of the system (3), 

called positive state controllability. The framework of positive state 
controllability puts the non-negativity constraint of the states on 
the cone and not on the whole linear space, and it is not clear that 
the positive input controllability theory is applicable. Therefore, 
Guiver et al. [10] proves that the positive state controllability of 
system (3) is equivalent to the positive input controllability of  
a related positive system. This connection is based on the main 
result arrived at in Guiver et al.’s study [10] (see Theorem 2.6). 

Theorem 2.6  proves that the non-negative state trajectories of 
system (3) with possibly negative inputs are precisely the non-
negative state trajectories of a related system with non-negative 
inputs (i.e., positive system). To demonstrate this relation, Guiver 

et al. [10] provide the following assumption: Given A ∈ ℝ+
n×n and 

B ∈ ℝ+
n×m, there is F ∈ ℝm×n such that Â = A − BF ≥ 0 and 

if v ∈ ℝ+
n  and w ∈ ℝm satisfy Âv + Bw ≥ 0, then w ≥ 0. This 

assumption shows the transformation from the system (3) with 

non-negative state trajectory x and possibly negative control u to 

a related positive system (Â, b)  with a non-negative control 
w = Fx + u. Besides, Guiver et al. [10] provide a constructive 

characterisation of the positive input control w  for the related 

system (see Lemma 2.1). This lemma takes a monomial sub-
matrix from B and the associate sub-matrix from A to formulate 

the matrix (vector) F and then the related positive system. Conse-
quently, positive state controllability is tied necessarily to the 
related positive system. That becomes a problem when the matrix 

B contains no monomial sub-matrix (i.e. the above assumption 
does not hold), and in this instance, it is not in any unique sense 
that the choice of F is carried out (see Remark 2.13 in Guiver et 
al. [10]). We aim to find a characterisation for the positive state 
controllability of the system (3) without using its related positive 
system (i.e. using A and B of the system (3) itself). 

We consider in the sequel the discrete LTI system with a sin-
gle input defined as follows:  

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝑏𝑢(𝑘),                                                   (4) 

where 𝐴 ∈ ℝ+
𝑛×𝑛, 𝑏 ∈ ℝ+

𝑛  and the state 𝑥 ∈ ℝ+
𝑛  , with 𝑢 ∈ ℝ.  

First, we state the important following theorem: 
Theorem 3.1 [10] The non-negative state trajectories of sys-

tem (4) from x0 ∈ ℝ+
n  are exactly the non-negative state trajecto-

ries of the relative system (Â, b) from x0 ∈ ℝ+
n  with non-negative 

control. 
Remark 3.2 We can deduce from Theorem 3.1 that to verify 

the positive state controllability  of the system (4) it is sufficient to 
verify the positive input controllability of the related positive sys-

tem (Â, b). 
We assume in the sequel that Guiver’s assumption is verified 

for the system (4). 

3.1. Positive state reachability (PSR) 

In this section, we give a definition and characterisation  
of positive state reachability of the system (4). 

Definition 3.3 We say that xf ∈ ℝ+
n  is PSR in finite time if 

there exists k ∈ ℕ  and a control u ∈ ℝ  that steers the state 
x ∈ ℝ+

n  of the system (4) from the origin to xf in k steps.  

Using Corollary 2.4 and Definition 3.3, the following corollary 

gives a characterisation for PSR of the system (4). 
Corollary 3.4 [10] The system (4) is PSR in finite time if and 

only if for some k ≥ n, the matrix Rk(Â, b) is monomial.  

Remark 3.5 For the system (4), we describe the positive 

state  reachability  set ℜ∞(Â, b)  as the set of all reachable 

states xf ∈ ℝ+
n  of the system (4). We say that the system (4) is 

PSR in finite time if ℜ∞(Â, b) = ℝ+
n .  

Our principal result is Theorem 3.6, which is a new characteri-
sation for PSR of the system (4). For ascertaining the characteri-
sation for reachability, we return to the well-known method fol-
lowed in the research of  Kalman et al. [11], which is based on the 
span of the reachability matrix of such a system. In the same way, 
the idea expressed in Theorem 3.6 is to demonstrate a character-
isation of PSR based on the form of the reachability matrix of the 
system (4).Thus, we prove that there is a deep connection be-
tween the reachability matrix of the system (4) and the reachability 

matrix of the related positive system (Â, b), and provide a new 
algorithm for ascertaining the validity of Guiver’s assumption.  

Theorem 3.6 The following assertions are equivalents: 
1. The reachability matrix of the system (4) is an upper triangular 

matrix, such as: 

𝑅𝑛(𝐴, 𝑏) = [

𝛼1,1 𝛼1,2 … 𝛼1,𝑛
0 𝛼2,2 … 𝛼2,𝑛
0 0 ⋱ ⋮
0 0 … 𝛼𝑛,𝑛

], 

with components verifying the following conditions:  

𝛼𝑗,𝑗 > 0,   𝛼1,1𝛼𝑗,𝑘+1 = 𝛼1,𝑘−𝑗+2𝛼𝑗,𝑗   ∀ 1 ≤ 𝑗 ≤ 𝑘 + 1.     (5) 

2. There exist f ∈ ℝ1×n, of the following form:  

{
 
 

 
 
𝑓0 = 1

𝑓1 =
𝛼1,2

𝛼1,1
2

⋮

𝑓𝑘+1 =
𝛼1,𝑘+2−𝛼1,1∑ 𝛼𝑗,𝑘+1𝑓𝑗

𝑘
𝑗=1

𝛼1,1𝛼𝑘+1,𝑘+1
  ∀ 1 ≤ 𝑘 ≤ 𝑛 − 2,

            (6) 

such that the matrix Rn(Â, b) is monomial. 
Proof. Assume that,  

𝑅𝑛(𝐴, 𝑏) = [

𝛼1,1 𝛼1,2 … 𝛼1,𝑛
0 𝛼2,2 … 𝛼2,𝑛
0 0 ⋱ ⋮
0 0 … 𝛼𝑛,𝑛

], 

with 𝛼𝑗,𝑗 > 0 and 𝛼1,1𝛼𝑗,𝑘+1 = 𝛼1,𝑘−𝑗+2𝛼𝑗,𝑗 , ∀ 1 ≤ 𝑗 ≤ 𝑘 + 1.  
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Since 

𝐴𝑘𝑏 = ∑  𝑘+1
𝑗=1 𝛼𝑗,𝑘+1𝑒𝑗,                                                                 (7) 

then we have 

𝐴𝑘+1𝑏 = 𝐴𝐴𝑘𝑏 = ∑  𝑘+1
𝑗=1 𝛼𝑗,𝑘+1𝐴𝑒𝑗,

= ∑  𝑘
𝑗=1 𝛼𝑗,𝑘+1𝐴𝑒𝑗 + 𝛼𝑘+1,𝑘+1𝐴𝑒𝑘+1.

     (8) 

Now, by using the recurrence method, let us prove that 

Âk𝑏 = 𝛼𝑘+1,𝑘+1𝑒𝑘+1: 

for 𝑘 = 0, 

�̂�0𝑏 = 𝑏 = 𝛼1,1𝑒1 = 𝛼1,1𝑓0𝑒1, 

and then  𝑓0 = 1. 

for 𝑘 = 1,  

�̂�𝑏 = (𝐴 − 𝑏𝑓)𝑏 = 𝐴𝑏 − 𝑏𝑓𝑏, 

and we have: 

{

𝑏 = 𝛼1,1𝑒1,

𝐴𝑏 = 𝛼1,2𝑒1 + 𝛼2,2𝑒2        

𝑓𝑏 = 𝛼1,1𝑓𝑒1 = 𝛼1,1𝑓1,
                               (by assumption) 

then 

�̂�𝑏 = (𝛼1,2 − 𝛼1,1
2 𝑓1)𝑒1 + 𝛼2,2𝑒2,

= 𝛼2,2𝑒2,
 

if 𝑓1 =
𝛼1,2

𝛼1,1
2 . 

Finally, we assume that �̂�𝑘𝑏 = 𝛼𝑘+1,𝑘+1𝑒𝑘+1 , and prove 

that �̂�𝑘+1𝑏 = 𝛼𝑘+2,𝑘+2𝑒𝑘+2. 

Let 

�̂�𝑘+1𝑏 = �̂��̂�𝑘𝑏 = �̂�(𝛼𝑘+1,𝑘+1𝑒𝑘+1),

= 𝛼𝑘+1,𝑘+1𝐴𝑒𝑘+1 − 𝛼𝑘+1,𝑘+1𝑏𝑓𝑒𝑘+1,

=
(8)
𝐴𝑘+1𝑏 −∑ 

𝑘

𝑗=1

𝛼𝑗,𝑘+1𝐴𝑒𝑗

−𝛼𝑘+1,𝑘+1𝑏𝑓𝑒𝑘+1,

=
(7)
∑ 

𝑘+2

𝑗=1

𝛼𝑗,𝑘+2𝑒𝑗 −∑ 

𝑘

𝑗=1

𝛼𝑗,𝑘+1𝐴𝑒𝑗

−𝛼𝑘+1,𝑘+1𝑏𝑓𝑒𝑘+1,

 

And by hypotheses (7) and (8), we have for every 1 ≤ j ≤ k, 

�̂�𝑗−1𝑏 = 𝛼𝑗,𝑗𝑒𝑗 ⇒ �̂�
𝑗
𝑏 = �̂��̂�

𝑗−1
𝑏 = 𝛼𝑗,𝑗𝐴𝑒𝑗 − 𝛼𝑗,𝑗𝑏𝑓𝑒𝑗 

and   �̂�
𝑗
𝑏 = 𝛼𝑗+1,𝑗+1𝑒𝑗+1, 

                            ⇒ 𝛼𝑗,𝑗𝐴𝑒𝑗 − 𝛼𝑗,𝑗𝑏𝑓𝑒𝑗 = 𝛼𝑗+1,𝑗+1𝑒𝑗+1 

                                𝑎𝑛𝑑   𝛼𝑗,𝑗 > 0                          (by assumption) 

                            ⇒ 𝐴𝑒𝑗 = 𝑏𝑓𝑒𝑗 +
𝛼𝑗+1,𝑗+1
𝛼𝑗,j

𝑒𝑗+1. 

Then �̂�𝑘+1𝑏 becomes: 

�̂�𝑘+1𝑏 =∑  

𝑘+2

𝑗=1

𝛼𝑗,𝑘+2𝑒𝑗 −∑ 

𝑘

𝑗=1

𝛼𝑗,𝑘+1 (𝑏𝑓𝑒𝑗 +
𝛼𝑗+1,𝑗+1

𝛼𝑗,𝑗
𝑒𝑗+1) 

            −𝛼𝑘+1,𝑘+1𝑏𝑓𝑒𝑘+1, 

            = 𝛼𝑘+2,𝑘+2𝑒𝑘+2 + 𝛼1,𝑘+2𝑒1 +∑  

𝑘+1

𝑗=2

𝛼𝑗,𝑘+2𝑒𝑗  

            −∑ 

𝑘

𝑗=1

𝛼𝑗,𝑘+1𝛼𝑗+1,𝑗+1

𝛼𝑗,𝑗
𝑒𝑗+1 − 𝛼1,1∑ 

𝑘

𝑗=1

𝛼𝑗,𝑘+1𝑓𝑗𝑒1 

            −𝛼1,1𝛼𝑘+1,𝑘+1𝑓𝑘+1𝑒1, 

            = 𝛼𝑘+2,𝑘+2𝑒𝑘+2 

            +∑ 

𝑘

𝑗=1

(𝛼𝑗+1,𝑘+2 −
𝛼𝑗,𝑘+1𝛼𝑗+1,𝑗+1

𝛼𝑗,𝑗
) 𝑒𝑗+1 

            +(𝛼1,𝑘+2 − 𝛼1,1∑ 

𝑘

𝑗=1

𝛼𝑗,𝑘+1𝑓𝑗 − 𝛼1,1𝛼𝑘+1,𝑘+1𝑓𝑘+1)𝑒1. 

Besides, by the hypothesis 𝛼1,1𝛼𝑗,𝑘+1 = 𝛼1,𝑘−𝑗+2𝛼𝑗,𝑗 ,  

we find that: 

𝛼1,1𝛼𝑗+1,𝑘+2 = 𝛼1,𝑘−𝑗+2𝛼𝑗+1,𝑗+1,

= 𝛼1,𝑘−𝑗+2𝛼𝑗,𝑗
𝛼𝑗+1,𝑗+1

𝛼𝑗,𝑗
,

= 𝛼1,1𝛼𝑗,𝑘+1
𝛼𝑗+1,𝑗+1

𝛼𝑗,𝑗
,

 

which gives 𝛼𝑗+1,𝑘+2 −
𝛼𝑗,𝑘+1𝛼𝑗+1,𝑗+1

𝛼𝑗,𝑗
= 0.  

Then  

�̂�𝑘+1𝑏 = 𝛼𝑘+2,𝑘+2𝑒𝑘+2, 

if  

𝑓𝑘+1 =
𝛼1,𝑘+2 − 𝛼1,1 ∑  𝑘

𝑗=1 𝛼𝑗,𝑘+1𝑓𝑗

𝛼1,1𝛼𝑘+1,𝑘+1
,    ∀ 1 ≤ 𝑘 ≤ 𝑛 − 2. 

Now, we can deduce that there is a vector 𝑓 ∈ ℝ1×𝑛, of the 

following form: 

{
  
 

  
 
𝑓0 = 1

𝑓1 =
𝛼1,2

𝛼1,1
2

⋮

𝑓𝑘+1 =
𝛼1,𝑘+2 − 𝛼1,1∑  𝑘

𝑗=1 𝛼𝑗,𝑘+1𝑓𝑗

𝛼1,1𝛼𝑘+1,𝑘+1
    ∀ 1 ≤ 𝑘 ≤ 𝑛 − 2,

 

such that the matrix [𝑏 �̂�𝑏 �̂�2𝑏 ⋯ �̂�𝑛−1𝑏] is monomial. 

Conversely, we assume that R∞(Â, b)  is monomial, i.e. 

Âkb = αk+1,k+1ei,k+1  and by recurrence, we prove that 

R∞(A, b)  is upper triangular with its components verifying the 

conditions (5), i.e. we prove that  

𝐴𝑘𝑏 = ∑  

𝑘+1

𝑗=1

𝛼𝑗,𝑘+1𝑒𝑖,𝑗 ,    ∀ 0 ≤ 𝑘 ≤ 𝑛 − 1, 
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such that 𝛼𝑘+1,𝑘+1 > 0 , 𝛼𝑗,𝑘+1 ≥ 0  and 𝛼1,1𝛼𝑗,𝑘+1 =

𝛼1,𝑘−𝑗+2𝛼𝑗,𝑗 for every 1 ≤ 𝑗 ≤ 𝑘 + 1. 

For all 0 ≤ 𝑘 ≤ 𝑛 − 2, we assume that  

{
 
 

 
 
𝐴𝑘𝑏 = ∑  

𝑘+1

𝑗=1

𝛼𝑗,𝑘+1𝑒𝑖,𝑗 ,    ∀ 0 ≤ 𝑘 ≤ 𝑛 − 2,

𝛼𝑘+1,𝑘+1 > 0, 𝛼𝑗,𝑘+1 ≥ 0   𝑎𝑛𝑑   

𝛼1,1𝛼𝑗,𝑘+1 = 𝛼1,𝑘−𝑗+2𝛼𝑗,𝑗 ,    ∀ 1 ≤ 𝑗 ≤ 𝑘 + 1,

 

and by recurrence, we prove that  

{
 
 

 
 
𝐴𝑘+1𝑏 =∑  

𝑘+2

𝑗=1

𝛼𝑗,𝑘+2𝑒𝑖,𝑗 ,    ∀  0 ≤ 𝑘 ≤ 𝑛 − 2,

𝛼𝑘+2,𝑘+2 > 0,   𝛼𝑗,𝑘+2 ≥ 0   𝑎𝑛𝑑 

𝛼1,1𝛼𝑗,𝑘+2 = 𝛼1,𝑘−𝑗+3𝛼𝑗,𝑗 ,    ∀  1 ≤ 𝑗 ≤ 𝑘 + 2.

 

Then,  

𝐴𝑘+1𝑏 = 𝐴𝐴𝑘𝑏 = (�̂� + 𝑏𝑓)∑  

𝑘+1

𝑗=1

𝛼𝑗,𝑘+1𝑒𝑖,𝑗  

                              = ∑  

𝑘+1

𝑗=1

𝛼𝑗,𝑘+1�̂�𝑒𝑖,𝑗 +∑  

𝑘+1

𝑗=1

𝛼𝑗,𝑘+1𝑏𝑓𝑒𝑖,𝑗 . 

Moreover, through the hypothesis �̂�𝑗−1𝑏 = 𝛼𝑗,𝑗𝑒𝑖,𝑗, we have  

�̂�𝑗𝑏 = �̂��̂�𝑗−1𝑏 = 𝛼𝑗,𝑗�̂�𝑒𝑖,𝑗  

and by hypothesis, we also have  

�̂�𝑗𝑏 = 𝛼𝑗+1,𝑗+1𝑒𝑖,𝑗+1 

Comparing the last two equalities, we find that  

�̂�𝑒𝑖,𝑗 =
𝛼𝑗+1,𝑗+1

𝛼𝑗,𝑗
𝑒𝑖,𝑗+1. 

Thus, 𝐴𝑘+1𝑏 becomes 

𝐴𝑘+1𝑏 = ∑  

𝑘+1

𝑗=1

𝛼𝑗,𝑘+1
𝛼𝑗+1,𝑗+1

𝛼𝑗,𝑗
𝑒𝑖,𝑗+1 +∑  

𝑘+1

𝑗=1

𝛼𝑗,𝑘+1𝑏𝑓𝑒𝑖,𝑗,

= ∑  

𝑘+1

𝑗=1

𝛼𝑗,𝑘+1
𝛼𝑗+1,𝑗+1

𝛼𝑗,𝑗
𝑒𝑖,𝑗+1

+(𝛼1,1∑ 

𝑘+1

𝑗=1

𝛼𝑗,𝑘+1𝑓𝑗)𝑒𝑖,1,

= ∑  

𝑘+2

𝑗=2

𝛼𝑗−1,𝑘+1
𝛼𝑗,𝑗

𝛼𝑗−1,𝑗−1
𝑒𝑖,𝑗

+(𝛼1,1∑ 

𝑘+1

𝑗=1

𝛼𝑗,𝑘+1𝑓𝑗)𝑒𝑖,1,

= ∑  

𝑘+2

𝑗=1

𝛼𝑗,𝑘+2𝑒𝑖,𝑗 ,

 

such that  

{
 
 

 
 
𝛼1,𝑘+2 = 𝛼1,1∑ 

𝑘+1

𝑗=1

𝛼𝑗,𝑘+1𝑓𝑗,

𝛼𝑗,𝑘+2 = 𝛼𝑗−1,𝑘+1
𝛼𝑗,𝑗

𝛼𝑗−1,𝑗−1
    ∀  2 ≤ 𝑗 ≤ 𝑘 + 2.

 

The first equality 𝛼1,𝑘+2 = 𝛼1,1∑  𝑘+1
𝑗=1 𝛼𝑗,𝑘+1𝑓𝑗  came from 

the following hypothesis:  

𝑓𝑘+1 =
𝛼1,𝑘+2 − 𝛼1,1∑  𝑘

𝑗=1 𝛼𝑗,𝑘+1𝑓𝑗

𝛼1,1𝛼𝑘+1,𝑘+1
,    ∀  1 ≤ 𝑗 ≤ 𝑘 − 2. 

Secondary, since  

𝛼𝑗,𝑘+2 = 𝛼𝑗−1,𝑘+1
𝛼𝑗,𝑗

𝛼𝑗−1,𝑗−1
,    ∀  2 ≤ 𝑗 ≤ 𝑘 + 2,                    (9) 

and by hypothesis (5), the following equality 

 𝛼𝑗,𝑘+1 = 𝛼1,𝑘−𝑗+2
𝛼𝑗,𝑗

𝛼1,1
,    ∀1 ≤ 𝑗 ≤ 𝑘 + 1,  

gives 

𝛼𝑗−1,𝑘+1 = 𝛼1,𝑘−𝑗+3
𝛼𝑗−1,𝑗−1

𝛼1,1
,    ∀ 2 ≤ 𝑗 ≤ 𝑘 + 2.               (10) 

Substituting (10) in (9) we find that: 

𝛼𝑗,𝑘+2 = 𝛼1,𝑘−𝑗+3
𝛼𝑗,𝑗

𝛼1,1
,    ∀ 2 ≤ 𝑗 ≤ 𝑘 + 2, 

with 𝛼𝑗,𝑘+2 ≥ 0, for all 2 ≤ 𝑗 ≤ 𝑘 + 2 (hypothesis).               

Theorem 3.6 shows that the choice of a vector f, which makes 

Rn(Â, b) monomial, is well characterised by the form (6), under 
the assumption that Rn(A, b) is an upper triangular matrix and its 
components verify the conditions (5). 

Corollary 3.7. The system (4) is PSR if and only if Rn(A, b) 
is an upper triangular matrix and its components verify the condi-
tions (5). 

Proof. Assume that Rn(A, b)  is an upper triangular matrix 
and its components verify the conditions (5). Then, by theorem 

3.6, there is f ∈ ℝ1×n  such that Rn(Â, b)  is n × n  monomial. 
Thus, according to corollary 3.4, the system (4) is PSR. Converse-

ly, if the system (4) is PSR, then by Corollary 3.4, Rn(Â, b) is 
n × n  monomial. Then by Theorem 3.6, Rn(A, b)  is an upper 
triangular matrix and its components verify the conditions (5).  

Proposition 3.8  If A and b are given by  

𝐴 =

[
 
 
 
 
𝑏1 𝑏1 ⋯ 𝑏1 𝑎𝑛
𝑎1 0 ⋯ 0 0
0 𝑎2 ⋯ 0 0
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝑎𝑛−1 0 ]

 
 
 
 

 𝑎𝑛𝑑 𝑏 = [

𝑏1
0
⋮
0

],                 (11) 

where ai, b1 ∈ ℝ+
∗ , ∀i ∈ {1,2, . . .  , n}  and an ≥ b1 , then the 

system (4) is PSR.  

Proof. First, we take A and b  with n = 2 (dimension of A), 
such that: 

𝐴 = [
𝑏1 𝑎2
𝑎1 0

]  𝑎𝑛𝑑 𝑏 = [
𝑏1
0
]. 
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The reachability matrix of the pair (𝐴, 𝑏) given by  

𝑅2(𝐴, 𝑏) = [
𝑏1 𝑏1

2

0 𝑎1𝑏1
] 

is upper triangular and the conditions (5) have been verified. The 

form (6) gives 𝑓 = [1 1] and  

�̂� = 𝐴 − 𝑏𝑓 = [
0 𝑎2 − 𝑏1
𝑎1 0

]. 

Then the reachability matrix of the pair (�̂�, 𝑏) given by  

𝑅2(�̂�, 𝑏) = [
𝑏1 0
0 𝑎1𝑏1

] 

is monomial. Thus, by corollary 3.4 the system is PSR. 

Now if 𝐴 and 𝑏 are with 𝑛 = 3, then  

𝐴 = [
𝑏1 𝑏1 𝑎3
𝑎1 0 0
0 𝑎2 0

]  𝑎𝑛𝑑 𝑏 = [
𝑏1
0
0

]. 

The reachability matrix of the pair (𝐴, 𝑏) given by  

𝑅3(𝐴, 𝑏) = [

𝑏1 𝑏1
2 𝑏1

3 + 𝑎1𝑏1
2

0 𝑎1𝑏1 𝑎1𝑏1
2

0 0 𝑎1𝑎2𝑏1

] 

is upper triangular and the conditions (5) have been verified. The 

form (6) gives 𝑓 = [1 1 1] and  

�̂� = 𝐴 − 𝑏𝑓 = [
0 0 𝑎3 − 𝑏1
𝑎1 0 0
0 𝑎2 0

]. 

Then the reachability matrix of the pair (�̂�, 𝑏) given by  

𝑅3(�̂�, 𝑏) = [

𝑏1 0 0
0 𝑎1𝑏1 0
0 0 𝑎1𝑎2𝑏1

] 

is monomial. Thus, by corollary 3.4 the system is PSR. 

If 𝐴 and 𝑏 are with 𝑛 = 4, then  

𝐴 = [

𝑏1 𝑏1 𝑏1 𝑎4
𝑎1 0 0 0
0 𝑎2 0 0
0 0 𝑎3 0

]  𝑎𝑛𝑑 𝑏 = [

𝑏1
0
0
0

]. 

The reachability matrix of the pair (𝐴, 𝑏) given by  

𝑅4(𝐴, 𝑏) = 

[
 
 
 
𝑏1 𝑏1

2 𝑏1
3 + 𝑎1𝑏1

2 𝑏1
4 + 2𝑎1𝑏1

3 + 𝑎1𝑎2𝑏1
2

0 𝑎1𝑏1 𝑎1𝑏1
2 𝑎1𝑏1

3 + 𝑎1
2𝑏1

2

0 0 𝑎1𝑎2𝑏1 𝑎1𝑎2𝑏1
2

0 0 0 𝑎1𝑎2𝑎3𝑏1 ]
 
 
 

 

is upper triangular and the conditions (5) have been verified. The 

form (6) gives 𝑓 = [1 1 1 1] and  

�̂� = 𝐴 − 𝑏𝑓 = [

0 0 0 𝑎4 − 𝑏1
𝑎1 0 0 0
0 𝑎2 0 0
0 0 𝑎3 0

]. 

Then the reachability matrix of the pair (�̂�, 𝑏) given by  

𝑅4(�̂�, 𝑏) = [

𝑏1 0 0 0
0 𝑎1𝑏1 0 0
0 0 𝑎1𝑎2𝑏1 0
0 0 0 𝑎1𝑎2𝑎3𝑏1

] 

is monomial. Thus, by corollary 3.4 the system is PSR. 

Then, without loss of generality, for all A and b given in (11), 

we can conclude that the reachability matrix Rn(A, b) is upper 
triangular and the conditions (5) are verified. Using the form (6), 
we ascertain that: 

𝑓 = [1 ⋯ 1]. 

Then the reachability matrix of the pair (�̂�, 𝑏) is given by  

𝑅𝑛(�̂�, 𝑏) =

[
 
 
 
 
 
 
𝑏1 0 0 … 0
0 𝑎1𝑏1 0 … 0
0 0 𝑎1𝑎2𝑏1 … ⋮
0 0 0 ⋱ 0

0 0 0 … ∏ 

𝑛

𝑖=1

𝑎𝑖𝑏1
]
 
 
 
 
 
 

 

and it is a monomial matrix. Consequently, by corollary 3.4, the 
system (11) is PSR. 

Remark 3.9. In general, the use of a base change produces a 

similar system. The system (4) is similar to another system (Ã, b̃) 

if there is a non-singular matrix P  such that Ã = P−1AP  and 

b̃ = P−1b. Thus, if there is a permutation matrix P, which makes 

the reachability matrix Rn(A, b) upper triangular, and if its com-
ponents verify the conditions (5), then by corollary 3.4, we deduce 
that the system is PSR. 

Corollary 3.10 The system (4) is PSR if there is a permutation 

matrix P  that makes the reachability matrix of the system (4) 
upper triangular with its components verifying the conditions (5). 

Proof. It is similar to that applying for corollary 3.7. 

3.2. Positive state null controllability (PSNC) 

Definition 3.11 We say that x0 ∈ ℝ+
n  is PSNC in finite time if 

there exist k ∈ ℕ  and a control u ∈ ℝ  that steers the state 

x ∈ ℝ+
n  of the system (4) from x0 to the origin in k steps.   

Remark 3.12. For the system (4), we describe the positive state 

null controllability set ker+(Â
n) as the set of all null controllable 

initial states x0 ∈ ℝ+
n  of the system (4). We say that the system 

(4) is PSNC  in finite time if ker+(Â
n) = ℝ+

n . 

Based on theorem 3.1 and corollary 2.8, a characterisation of 
PSNC in finite and infinite time is the following: 

Corollary 3.13 [10]  

The system (4) is PSNC in finite time if and only if Â is nilpo-
tent.   

The system (4) is PSNC in infinite time if and only if Â  is 
Schur.  

Proposition 3.14.  Let the system (4) be as given in (4) 
If an = b, then the system (4) is PSNC in finite time. 

If an > b and ∏  n
i=1 aib < 1 , then the system (4) is PSNC in 

infinite time.  
Proof. Let the system (4) be as given in (11).  

First, if an = b we obtain  
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�̂� =

[
 
 
 
 
0 0 ⋯ 0 0
𝑎1 0 ⋯ 0 0
0 𝑎2 ⋯ 0 0
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝑎𝑛−1 0]

 
 
 
 

, 

which is a nilpotent matrix; then, by corollary 3.13, the system (4) 

is PSNC  in finite time. Secondarily, if 𝑎𝑛 > 𝑏, we obtain  

�̂� =

[
 
 
 
 
0 0 ⋯ 0 𝑎𝑛 − 𝑏
𝑎1 0 ⋯ 0 0
0 𝑎2 ⋯ 0 0
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝑎𝑛−1 0 ]

 
 
 
 

, 

and 

�̂�𝑛×𝑘 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
(∏ 

𝑛

𝑖=1

𝑎𝑖𝑏)

𝑘

0 0 … 0

0 (∏ 

𝑛

𝑖=1

𝑎𝑖𝑏)

𝑘

0 … 0

0 0 (∏ 

𝑛

𝑖=1

𝑎𝑖𝑏)

𝑘

… ⋮

0 0 0 ⋱ 0

0 0 0 … (∏ 

𝑛

𝑖=1

𝑎𝑖𝑏)

𝑘

]
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

then �̂�𝑛×𝑘 = 0𝑛  if ∏  𝑛
𝑖=1 𝑎𝑖𝑏 < 1  and 𝑘 → ∞ . Therefore, by 

corollary 3.13, the system (4) is PSNC in infinite time. 

3.3. Positive state controllability (PSC) 

Definition 3.15 We say that the system (4) is PSC  in finite 

time if for all x0, xf ∈ ℝ+
n , there exist k ∈ ℕ and a control u ∈ ℝ 

that steers the state x ∈ ℝ+
n  of the system (4) from x0 to xf in k 

steps. 
Proposition 3.16 [10]. The system (4) is PSC in finite - or infi-

nite - time if and only if it is PSR and PSNC in finite - or infinite - 
time. 

According to proposition 3.16, as well as Corollaries 3.7 and 
3.13, we deduce the following propositions.  

Proposition 3.17. The system (4) is PSC in finite - or infinite - 

time if and only if Rn(A, b) is an upper triangular matrix with its 

components verifying the conditions (5) and Â is nilpotent, - or 
Schur -. 

Proof. It is clear according to proposition 3.16 and corollaries 
3.7 and 3.13. 

Corollary 3.18. If the system (4) is PSC in k  steps, then 

x0 ∈ kerÂ
k and xf ∈ Rk(Â, b), for all k ≥ n.   

Proposition 3.19. Let the system (4) be as given in (11). 
If an = b, then the system (4) is PSC in finite time. 

If an > b  and ∏  n
i=1 aib < 1 , then the system (4)  is PSC in 

infinite time. 
Proof. It is clear from Propositions 3.8 and 3.14. 

Using Propositions 3.8 and 3.19 we obtain the following re-
sult: 

Corollary 3.20 The System (11) is PSC if it is PSNC.  
Proof. According to proposition 3.8, the system (11) is always 

PSR. Then, by proposition 3.19, this system is PSC  if it is PSNC. 

4. EXAMPLES 

Example 4.1 (Formulation test) 

Let us consider the system (4) given by  

𝐴 = [
1 1 1
2 0 0
0 1 0

]  𝑎𝑛𝑑 𝑏 = [
1
0
0
]. 

The reachability matrix of the system (𝐴, 𝑏)  

𝑅3(𝐴, 𝑏) = [
1 1 3
0 2 2
0 0 2

] 

is upper triangular and its components verify the conditions (5). 

Using the form (6), there exist f = [1 1 1]  such that �̂� =

𝐴 − 𝑏𝑓 = [
0 0 0
2 0 0
0 1 0

] . Then the reachability matrix of the 

system (�̂�, 𝑏) given by  

𝑅3(�̂�, 𝑏) = [
1 0 0
0 2 0
0 0 2

] 

is monomial. Then, by corollary 3.7, the system (A, b) is PSR. 

Additionally, the matrix Â3 = 03. Therefore, by Corollary 3.13, the 

system (A, b) is PSNC. According to Proposition 3.17, we de-
duce that the system (A, b) is PSC. 

Example 4.2. (Matrix of Leslie in ℝ6×6). 
Consider the discrete LTI system (4) defined by the following 

matrices:  

𝐴 =

[
 
 
 
 
 
3 3 3 3 3 6
2 0 0 0 0 0
0 5 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0]

 
 
 
 
 

 𝑎𝑛𝑑 𝑏 =

[
 
 
 
 
 
3
0
0
0
0
0]
 
 
 
 
 

. 

The reachability matrix of the system (𝐴, 𝑏) is as follows  

𝑅6(𝐴, 𝑏) =

[
 
 
 
 
 
3 9 45 279 1467 7875
0 6 18 90 558 2934
0 0 30 90 450 2790
0 0 0 30 90 450
0 0 0 0 60 180
0 0 0 0 0 60 ]

 
 
 
 
 

. 

R6(A, b) is upper triangular and its components verify the condi-
tions (5). Then, by corollary 3.7, the system (A, b) is PSR. We 
can check this by using the form (6). Then, we obtain 

 f = [1 1 1 1 1 1] 

 and  

�̂� = 𝐴 − 𝑏𝑓 =

[
 
 
 
 
 
0 0 0 0 0 3
2 0 0 0 0 0
0 5 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0]

 
 
 
 
 

. 
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The reachability matrix of the system (�̂�, 𝑏) is given by  

𝑅6(�̂�, 𝑏) =

[
 
 
 
 
 
3 0 0 0 0 0
0 6 0 0 0 0
0 0 30 0 0 0
0 0 0 30 0 0
0 0 0 0 60 0
0 0 0 0 0 60]

 
 
 
 
 

. 

Since R6(Â, b) is monomial, then by corollary 3.7, this sys-
tem (A, b) is PSR. Furthermore, according to the second asser-

tion in proposition 3.14, we have a6 = 6 > b = 3  but 
∏  n
i=1 aib = 120 > 1 , which implies that this system is not 

PSNC. Thus, this system is not PSC. 

With a little change, if we take a1 = 10−5 , we obtain 

∏  n
i=1 aib = 6 × 10

−4 < 1 . Therefore, the matrix Âk → 06 

when k → ∞. Then, by proposition 3.19 and corollary 3.20, this 
system is PSC. 

Example 4.3. (Population dynamics). 
We consider a population structured in equal lengths age 

classes. This length is also used to measure time discretely. We 
divide animals into three subgroups: aged 0 to 10 years (size 

measured by the sequence (xn)), 10 to 20 years (size measured 
by the sequence (yn)) and 20 to 30 years (size measured by the 

sequence (zn)). Here the initial conditions (i.e. the data of x0, y0 

and z0) correspond to the year 2000. Then, xn is the size of the 
subgroup 0 to 10 years in 2000+10n… etc. All informations about 
the population are contained in the following vector (i.e. a matrix 
of size 3.1):  

𝑋𝑛 = [

𝑥𝑛
𝑦𝑛
𝑧𝑛
]. 

In these groups of animals, it is assumed that group 1 is too 
young to reproduce, group 2 reproduces with a fertility rate equal 
to 1 and group 3 reproduces with a fertility rate equal to 5. It is 
assumed that the probability that an individual from group 1 sur-
vives so as to be comprised in group 2 is 0,2 and the probability 
that an individual from group 2 survives so as to be comprised in 
group 3 is 0,5. We can then make a life cycle diagram and write 
the linear system as follows:  

{

𝑥𝑛+1 = 𝑦𝑛 + 5𝑧𝑛
𝑦𝑛+1 = 0.2𝑥𝑛
𝑧𝑛+1 = 0.5𝑦𝑛

 

which can be rewritten in the following matrix form: 

𝑋𝑛+1 = 𝐴𝑋𝑛 = [
0 1 5
0.2 0 0
0 0.5 0

] 𝑋𝑛. 

The matrix A is a Leslie matrix. The dynamics of this system 

shows that, since the fertility rate of zn  is equal to 5, we may 

predict that the size of xn will increase, and so will the population. 
Then, given the prevalence of a favourable condition character-
ised by an absence of threats and the unlimited availability of 
nutrition (abundant eating and drinking, absence of epidemic, 
absence of predators, etc.), this population will destroy the ecolog-
ical system. So we added the control term to control (minimise) 
the size of the first subgroup xn  (the new births), and thus the 
system becomes as follows:  

𝑋𝑛+1 = 𝐴𝑋𝑛 + 𝑏𝑢𝑛 = [
0 1 5
0.2 0 0
0 0.5 0

] 𝑋𝑛 + [
1
0
0
] 𝑢𝑛,         (12) 

where un ∈ ℝ. Now, we check the positive state controllability  

of this system. The reachability matrix of the system (12) is as 

follows: 

𝑅2(𝐴, 𝑏) = [
1 0 0.2
0 0.2 0
0 0 0.1

], 

which is an upper triangular matrix, and its components verify the 

conditions (5) Then, by corollary 3.7, this system is PSR. Addi-

tionally, using the form (6), there exist f = [1 0 1] such that  

�̂� = 𝐴 − 𝑏𝑓 = [
−1 1 4
0.2 0 0
0 0.5 0

].  

The eigenvalues λ1 ≈ 0.572 , λ2 ≈ −0.786 + i(0.285) 

and λ3 ≈ −0.786 − i(0.285)  of Â are strictly less than (1) 
Then, by corollary 3.13 this system is PSNC. According to Propo-

sition 3.17 this system is PSC. Then, we choose to take un =
−3zn  to make the rate of fertility of zn  equal to 2  in order to 
minimise xn (which represents the new births). 

The study of  Cáceres and Cáceres-Saez [5] presents a 
similar application. They consider a single-sex population model, 
with three age compartments (adults, juveniles and calves). The 
study is on the female reproductive success in bottlenose dolphins 
(with more information being available from the cited study [5]). 
Therefore, the 3x3 population dynamics model is subject to a 
Leslie matrix characterised as we mentioned in our application 
(example 4.3). Consequently, the results obtained in example 4.3 
can be projected to the application from the study of Cáceres and 
Cáceres-Saez [5]. 

5. CONCLUSION 

In this paper, we investigate the controllability of discrete LTI 
systems (4) where the state is positive, and the input can take a 
negative value, called positive state controllability. Our idea was to 
demonstrate the connection between the positive input controlla-
bility and positive state controllability. In section 3, we demon-
strated the equivalence between the positive state reachability of 
the system (4) and the positive input reachability of the related 

positive system (Â, b)  under some conditions. Moreover, we 
proved that, if the reachability matrix of the system (4) is upper 
triangular and satisfies some conditions (see conditions (5), then 
the system is positive state reachable. The subject of further 
research will be the development of the result of the positive state 
controllability of discrete LTI systems with multiple inputs. Non-
linear and singular systems engage our attention, providing us 
with the impetus to proceed with a new study. 
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