PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Energy decay result for a nonlinear wave p-Laplace equation with a delay term

Identyfikatory
Warianty tytułu
PL
Wynik zaniku energii dla równania p-Laplace'a fal nieliniowych
Języki publikacji
EN
Abstrakty
EN
We consider the nonlinear (in space and time) wave equation with delay term in the internal feedback. Under conditions on the delay term and the term without delay, we study the asymptotic behavior of solutions using the multiplier method and general weighted integral inequalities.
PL
Rozważamy nieliniowe równanie falowe (w czasie i przestrzeni) z członem wewnętrznego sprzężenia zwrotnego. Przy pewnych warunkach na poszczególne człony równania badane jest asymptotyczne zachowanie rozwiązań.
Rocznik
Strony
65--80
Opis fizyczny
Bibliogr. 24 poz., fot.
Twórcy
autor
  • Qassim University, Department of Mathematics, College of Sciences and Arts, Ar-Rass, Al-Kasim, Kingdom of Saudi Arabia
  • Laboratory LAMAHIS, University 20 Aôut 1955, Department of Mathematics, Faculty of Sciences, Skikda, Alegeria
autor
  • University of Constantine 1, Department of Mathematics, Faculty of Sciences, Algeria
Bibliografia
  • [1] C. Abdallah, P. Dorato, J. Benitez-Read, and R. Byrne, Delayed positive feedback can stabilize oscillatory system, in: Proceedings of the 1993 American Control Conference, pp. 3106-3107, San Francisco, CA, USA, 1993. Digital Repositiry of UNM.
  • [2] F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim. 51:1 (2005), 61-105.
  • [3] V. I. Arnold, Mathematical Methods of Classical Mechanics, Translated from the Russian by K. Vogtmann and A.Weinstein. Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
  • [4] A. Benaissa and A. Guesmia, Energy decay for wave equations of ϕ-Laplacian type with weakly nonlinear dissipation, Electron. J. Differential Equations 2008, No. 109, 22 pp.
  • [5] A. Beniani , A. Benaissa and Kh. Zennir , Polynomial Decay of Solutions to the Cauchy Problem for a Petrovsky–Petrovsky System in Rn, Acta. Appl. Math. 146 (2016), pp. 67-79.
  • [6] M. M. Cavalcanti, V. D. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping – source interaction, J. Differential Equations 236: 2 (2007), 407-459.
  • [7] G. Chen, Control and stabilization for the wave equation in a bounded domain, SIAM J. Control Optim. 17: 1 (1979), 66-81.
  • [8] G. Chen, Control and stabilization for the wave equation in a bounded domain, II. SIAM J. Control Optim. 19:1 (1981), 114-122.
  • [9] M. Daoulatli, I. Lasiecka, and D. Toundykov, Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions, Discrete Contin. Dyn. Syst. Ser. S 2: 1 (2009), 67-94.
  • [10] R. Datko, J. Lagnese, and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24: 1 (1986), 152-156.
  • [11] M. Eller, J. E. Lagnese, and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comput. Appl. Math. 21: 1 (2002), 135-165.
  • [12] A. Guesmia, Inégalités intégrales et application à la stabilisation des systèmes distribués non dissipatifs, HDR thesis, Paul Verlaine-Metz Univeristy, 2006.
  • [13] A. Haraux, Two remarks on hyperbolic dissipative problems, in: Nonlinear partial differentia equations and their applications. College de France seminar, Vol. VII (Paris, 1983-1984), 6, pp. 161-179, Res. Notes in Math., 122, Pitman, Boston, MA, 1985.
  • [14] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.
  • [15] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations 6: 3 (1993), 507-533.
  • [16] I. Lasiecka, Mathematical Control Theory of Coupled PDEs, CBMS-NSF Regional Conference Series in Applied Mathematics, 75. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
  • [17] I. Lasiecka and D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal. 64: 8 (2006), 1757-1797.
  • [18] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.
  • [19] M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. Appl. 60: 2 (1977), 542-549.
  • [20] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45: 5 (2006), 1561-1585.
  • [21] S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differential Integral Equations 21: 9-10 (2008), 935-958.
  • [22] C. Q. Xu, S. P. Yung, and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var. 12: 4 (2006), 770-785.
  • [23] Kh. Zennir, General decay of solutions for damped wave equation of Kirchhoff type with density in Rn.Ann Univ Ferrara, Vol. 61, (2015) 381-394.
  • [24] S. Zitouni, and Kh. Zennir, On the existence and decay of solution for viscoelastic wave equation with nonlinear source in weighted spaces. Rend. Circ. Mat. Palermo, II. Ser, 2016, doi: 10.1007/s12215-016-0257-7.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df5a0ab4-d3b2-4f71-a089-0d09889467db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.