PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perturbations of the depth of liquid penetration into the capillary during bubble departures

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, the influence of bubble size on liquid penetration into the capillary was experimentally and numerically studied. In the experiment, bubbles were generated from a glass capillary (with an inner diameter equal to 1 mm) in a glass tank containing distilled water, tap water or an aqueous solution of calcium carbonate. These liquids differ in the value of their surface tension, which influences the bubble size. During experimental investigations, air pressure fluctuations in the gas supply system were measured. Simultaneously, the videos showing the liquids’ penetration into the capillary were recorded. Based on the videos, the time series of liquid movements inside the capillary were recovered. The numerical models were used to study the influence of bubble size on the velocity of liquid flow above the capillary and the depth of liquid penetration into the capillary. It was shown that the air volume flow rate and the surface tension have the greatest impact on the changes of pressure during a single cycle of bubble departure (Δp). The changes in pressure during a single cycle of bubble departure determine the depth of liquid penetration into the capillary. Moreover, the values of Δp and, consequently, the depth of liquid penetration can be modified by perturbations in the liquid velocity above the capillary outlet.
Rocznik
Strony
254--259
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Department of Mechanics and Applied Computer Science, Faculty of Mechanical Engineering, Białystok University of Technology ul. Wiejska 45C, 15-351 Białystok, Poland
Bibliografia
  • 1. Aoyama, S., Hayashi, K. Hosokawa, S., Tomiyama A., (2016), Shapes of ellipsoidal bubbles in infinite stagnant liquids Int. J. Multi-phase. Flow, 79, 23-30.
  • 2. Augustyniak, J., Perkowski, D. M., (2021), Compound analysis of gas bubble trajectories with help of multifractal algorithm, Exp Ther-mal Fluid Sci., 124, 110351.
  • 3. Cano-Lozano, J.C., Bolaños-Jiménez, R., Gutiérrez-Montes, C., Martínez-Bazán, C., (2017), On the bubble formation under mixed injection conditions from a vertical needle. Int J Multiphase FLows. 97, 23–32.
  • 4. Cieslinski, J.T., Mosdorf, R., (2005), Gas bubble dynamics experi-ment and fractal analysis, Int. J. Heat Mass Transfer 48 (9) 1808–1818.
  • 5. Dukhin S.S., Koval’chuk V.I., Fainerman V.B., Miller R.,(1998b), Hydrodynamic processes in dynamic bubble pressure experiments Part 3. Oscillatory and aperiodic modes of pressure variation in the capillary, Colloids and Surfaces A: Physicochemical and Engineering Aspects 141, s 253–267.
  • 6. Dukhin S.S., Mishchuk N.A., Fainerman V.B., Miller R., (1998a)., Hydrodynamic processes in dynamic bubble pressure experiments 2. Slow meniscus oscillations, Colloids and Surfaces A: Physicochemi-cal and Engineering Aspects 138 s. 51–63.
  • 7. Dzienis, P., Mosdorf, R., (2013), Synchronization of data recorded using acquisition stations with data from camera during the bubble departure. Adv. Sci. Technol. Res. J. 7 no 20, 29-34.
  • 8. Dzienis, P., Mosdorf, R., (2014) Stability of periodic bubble depar-tures at a low frequency. Chemical Engineering Science. 109, 171–182.
  • 9. Farhat, M., Chinaud, M., Nerisson, P., Vauquelin, P., (2021), Characterization of bubbles dynamics in aperiodic formation, Int J Heat Mass Transfer, 180, 121646.
  • 10. Kass, M., Witkin, A., Terzopoulos, D., (1987), Snakes – Active Contour Models., Int. J. Comp. Vis., 1, 4, 321-331.
  • 11. Koval’chuk V.I., Dukhin S.S., Fainerman V.B., Miller R., (1999), Hydrodynamic processes in dynamic bubble pressure experiments. 4. Calculation of magnitude and time of liquid penetration into capil-laries, Colloids and Surfaces A: Physicochemical and Engineering Aspects 151, s 525–536.
  • 12. Leifer, I., Tang, D., (2007), The acoustic signature of marine seep bubbles. J. Acoust. Soc. Am. 121, 35–40.
  • 13. Liu, L., Yan, H., Zhao, G., (2015), Experimental studies on the shape and motion of air bubbles in viscous liquids Exp. Therm. Fluid Sci., 62, 109-121.
  • 14. Mosdorf, R., Shoji, M.,(2003), Chaos in bubbling - nonlinear analy-sis and modelling, Chem. Eng. Sci. 58 (2003) 3837–3846.
  • 15. Osher, S., Sethian, J. A., (1988), Fronts Propagating with Curva-ture-Dependent Speed: Algorithms Based on Hamilton-Jacobi For-mulations. J. Comp. Phys., 79, 1, pp. 12-49.
  • 16. Ruzicka M.C., R. Bunganic R., Drahoˇs J., (2009b), Meniscus dynamics in bubble formation. Part II: Model, Chem. Eng. Res. Des., 87, s. 1357–1365.
  • 17. Ruzicka, M.C., Bunganic, R. Drahos, J., (2009a), Meniscus dynam-ics in bubble formation. Part I: Experiment. Chem. Eng. Res. Des., 87: 1349–1356.
  • 18. Stanovsky P., Ruzicka M.C., Martins A., Teixeira J.A, (2011), Meniscus dynamics in bubble formation: A parametric study, Chemi-cal Engineering Science, 66, s. 3258–3267.
  • 19. Vázquez, A., Manasseh, R., Chicharro, R. (2015), Can acoustic emissions be used to size bubbles seeping from a sediment bed. 131, 187–196.
  • 20. Zang L., Shoji M., (2001), Aperiodic bubble formation from a sub-merged orifice, Chemical Engineering Science 56, 5371-5381.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df5969cd-bd2f-48c3-a86b-39503e024c14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.