PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal design of the switched reluctance motor to the electric vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalna konstrukcja przełączanego silnika reluktancyjnego do pojazdu elektrycznego
Języki publikacji
EN
Abstrakty
EN
The paper presents the algorithm and procedure for optimization of the switched reluctance motor. The switched reluctance motor (SRM) with an 8/6 structure is optimized. Two design variables are taken into account in the optimization process. Such types of SRM are commonly used in hybrid electric vehicles and aerospace applications. The main aim of our work is to increase the performance parameters of electric vehicles and to make them more optimized for low cost by using suitable dimensions of motor and different kind of design materials. In the objective functions the electromagnetic torque, the torque ripple, and the mass of the core are taken into consideration. The optimization calculation is executed in the 2D finite element method. The performance characteristics are determined for both optimal structures. Selected results of the calculation are presented and discussed.
PL
W artykule przedstawiono algorytm i oprogramowanie do optymalizacji silnika reluktancyjnego o konfiguracji 8/6. W procesie optymalizacji uwzględnione zostały dwie zmienne projektowe opisujące strukturę silnika. Do optymalizacji zastosowano metodę salpów, zaś ograniczenia uwzględniono przy wykorzystaniu metody funkcji kary zewnętrznej. Celem procedury optymalizacyjnej jest poprawa parametrów funkcjonalnych silnika przeznaczonego do napędu rikszy rowerowej. W kompromisowej funkcji celu uwzględniono: moment elektromagnetyczny, tętnienia momentu oraz masę rdzenia. Wykonano obliczenia optymalizacyjne dla dwóch różnych materiałów z którego wykonano rdzeń. Przedstawiono i omówiono wybrane wyniki obliczeń optymalizacyjnych.
Rocznik
Strony
246--249
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Poznan University of Technology, ul, Piotrowo 3a, 60-965 Poznan, Poland
  • Siddhartha Engineering College, Vijayawada 520007, India
  • Department of Electrical/ Electronics and Instrumentation Engineering, Institute of Chemical Technology
  • Lille University of Technology, Lille, France
  • Selcuk University, Konya, Turkey
Bibliografia
  • [1] Choi Y.K., Koh C.S., Pole-shape optimization of a switched-reluctance motor for torque ripple reduction, IEEE Trans. on Magnetics, vol. 43, no. 4, 1797-1800, 2007.
  • [2] Xue X.D., Cheng K.W.E., Ng T.W., Cheung N.C., Multi-Objective Optimization Design of In-Wheel Switched Reluctance Motors in Electric Vehicles, IEEE Transaction on Industrial Electronics, vol.57, no.9, pp. 2980- 2987, 2010.
  • [3] Bilgin B., Emadi A., Krishnamur thy M., Design Considerations for Switched Reluctance Machines With a Higher Number of Rotor Poles, IEEE Transaction on Industrial Electronics, vol. 59, no. 10, pp.3745-3756, 2012.
  • [4] Takeno M., Chiba A., Hoshi N., Ogasawara S., Takemoto M., Rahman M. A., Test Results and Torque Improvement of the 50kW Switched Reluctance Motor Designed for Hybrid Electric Vehicles, IEEE Transaction on Industry Applications, vol.48, no.4, pp. 1327-1334, 2012.
  • [5] Kiyota K., Chiba A., Design of Switched Reluctance Motor Competitive to 60-kW IPMSM in Third-Generation Hybrid Electric Vehicle, IEEE Transaction on Industry Applications, vol. 48, no. 6, pp.2303-2309, 2012.
  • [6] Kiyota K., Kakishima T., Chiba A., Comparison of Test Result and Design Stage Prediction of Switched Reluctance Motor Competitive With 60-kW Rare-Earth PM Motor, IEEE Transaction on Industrial Electronics, vol. 61, no. 10, pp. 5712-5721, pp.2564-2575, 2014.
  • [7] Kakishima T., Kiyota K., Nakano S., Chiba A., Pole selection and vibration reduction of Switched Reluctance Motor for hybrid electric vehicles, 2014 IEEE Transportation Electrification Conference and Expo Asia-Pacific, Aug. 31- Sept. 3, 2014, pp. 1-4.
  • [8] Ozawa I., Kosaka T., Matsui N., Less Rare-Earth Magnet-High Power Density Hybrid Excitation Motor Designed for Hybrid Electric Vehicle Drives, in Proceedings of the Eur. Conf. Power Electron. Appl, Barcelona, Spain, Sep. 8–10, 2009, pp. 1-10.
  • [9] Wu S., Xu H., Zhang T. , Gu Q., Wang B., Multi- Objective Optimization of an Axial Flux Permanent Magnet Brushless DC Motor with Arc-Shaped Magnets, Applied Sciences, vol. 12, no.11641, pp. 1-14, 2022.
  • [10] Xue X. D., Cheng K.W.E., Ng T.W., Cheung N.C., Multi-Objective Optimization Design of In-Wheel Switched Reluctance Motors in Electric Vehicles, IEEE Transaction on Industrial Electronics, vol. 57, no. 9, pp. 2980–2987, 2010.
  • [11] Minami S., Sanada M., Morimoto S., Inoue Y., Influence of ratio of external diameter to stack length on torque and efficiency in outer rotor SPMSMs, IEEE Energy Conversion Congress 2015, Montreal, pp. 1834-1839, 2015.
  • [12] Huang R., A Hybrid Particle Swarm Optimization and Single-Objective Slap Swarm Optimization Algorithm Based MPPT Strategy, Journal of Physics: Conference Series, no. 2290, pp. 1-6, 2022.
  • [13] Mir jalili S., Gandomi A.H., Zahra Mijjalili S., Saremi S., Faris H., Mohammad Mirjalili S., Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Advances in Eng. Software, pp. 1-29, 2017.
  • [14] Knypiński Ł ., Devarepalli R ., Le Menach Y., Constrained optimization of the brushless DC motor using the salp swarm algorithm, Archives of Electrical Engineering, vol. 71, no. 3, pp. 775-787, 2022.
  • [15] Khajehzadem M., Iraji A. , Majdi A., Keawsawasvong S., Nehdi M.L., Adaptive Salp Swarm Algorithm for Optimization of Geotechnical Structures, Applied Sciences, vol. 12, no. 6749, pp. 1-23, 2022.
  • [16] Andriushchenko E., Kallas te A., Hossain Mohammadi M., Lowther D.A., Heidar H., Sensitivity Analysis for Multi-Objective Optimization of Switched Reluctance Motors, Machines, vol. 10, no. 559, pp. 1-16, 2022.
  • [17] Afifi M., Rezk H., Ibrahim M., El -Nemr M., Multi-Objective Optimization of Switched Reluctance Machine Design Using Jaya Algorithm (MO-Jaya), Mathematics, vol. 9, no. 1107, pp. 1 – 19, 2021.
  • [18] Sun X., Wu J ., Wang S., Diao K., Yang Z., Analysis of torque ripple and fault-tolerant capability for a 16/10 segmented switched reluctance motor in HEV applications, COMPEL, vol. 38, no. 6, pp. 1725-1737, 2019.
  • [19] Knypiński Ł., Constrained optimization of line-start PM motor based on the gray wolf optimizer, Eksploatacja i Niezawodnosc – Maintenance and Reliability, vol. 23, no. 1, pp. 1 – 10, 2021.
  • [20] Knypiński Ł., Kowalski K., Nowak L., Constrained optimization of the magnetostrictive actuator with the use of penalty function method,COMPELl, vol. 37, no. 5, pp. 1575 – 1584, 2018.
  • [21] Oguntola B.M., Lorentzen R.J., Ensemble-based constrained optimization using an exterior penalty method, Journal of Petroleum Science and Engineering, vol. 207, no. 109165, 2021.
  • [22] Knypiński Ł., A novel hybrid cuckoo search algorithm for optimization of a line-start PM synchronous motor, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 71, no. 1. pp. 1-8, 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df57069b-9b22-416e-be8c-7d89e2038e36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.