PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Chaotic behavior in the rotational speed of internal combustion engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the chaotic behavior in the rotational speed of internal combustion engines. High-precision measurements of engine rotational speed were taken at discrete intervals of 0.36 degrees with time measured to a precision of 41 nanoseconds. The data was analyzed using various techniques from chaos theory and nonlinear dynamics, including Lyapunov exponent calculations, phase space reconstruction, and power spectral density analysis. Results reveal that engine rotational speed exhibits complex, chaotic behavior across different operating conditions. Lyapunov exponents ranged from -0.004 to 0.024, indicating varying degrees of chaos from near-stability to strong chaotic behavior. The strongest chaos was observed at certain idle speeds, while full gas conditions showed milder but persistent chaotic characteristics. The study demonstrates that rotational speed fluctuations in internal combustion engines go beyond simple periodic or random variations, suggesting that traditional linear models may be insufficient for accurately predicting and controlling engine behavior. These findings have significant implications for engine design, control strategies, and diagnostics. The authors provide access to the original datasets and analysis code, encouraging further research and collaboration in this field. This work contributes to a deeper understanding of engine dynamics and may lead to the development of more sophisticated, nonlinear approaches to engine analysis and optimization.
Rocznik
Tom
Strony
237--255
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Department of Automobile Transport, Zhytomyr Agricultural Technical Professional College, Pokrovska Street 96, 10031 Zhytomyr, Ukraine
  • Department of Automobile Transport, Zhytomyr Agricultural Technical Professional College, Pokrovska Street 96, 10031 Zhytomyr, Ukraine
  • Department of Automobile Transport, Zhytomyr Agricultural Technical Professional College, Pokrovska Street 96, 10031 Zhytomyr, Ukraine
  • Department of Automobile Transport, Zhytomyr Agricultural Technical Professional College, Pokrovska Street 96, 10031 Zhytomyr, Ukraine
autor
  • Faculty of Engineering of Machines, Structures and Technologies, Ternopil Ivan Puluj National Technical University, Ruska 56 Street, 46000 Ternopil, Ukraine
  • General Technicalisciplines Department, Zhytomyr Agricultural Technical Professional College, Pokrovska Street 96, 10031 Zhytomyr, Ukraine
  • Faculty of Engineering of Machines, Structures and Technologies, Ternopil Ivan Puluj National Technical University, Ruska 56 Street, 46000 Ternopil, Ukraine
Bibliografia
  • 1. Boeing Geoff. 2016. "Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction". Systems 4: 37. DOI: 10.3390/systems4040037.
  • 2. Stewart Ian. 2000. "The lorenz attractor exists". Nature 406: 948-949. DOI: 10.1038/35023206.
  • 3. Wendeker Miroslaw, Jacek Czarnigowski, Grzegorz Litak, Kazimierz Szabelski. 2003. "Chaotic Combustion in spark ignition engines". Chaos Solitons & Fractals 18(4): 803-806. DOI: 10.1016/S0960-0779(03)00031-6.
  • 4. Huanyu Di, Shen Tielong. 2018. "Experimental analysis of chaotic property of in-cylinder combustion of si engine." 37th Chinese Control Conference (CCC): 7907-7911. Wuhan, China. DOI: 10.23919/ChiCC.2018.8483466.
  • 5. Lima, Thyago L. de V., Abel C.L. Filho, Francisco A. Belo, Filipe V. Souto, Thaís C.B. Silva, Koje V. Mishina, Marcelo C. Rodrigues. 2021. "Noninvasive methods for fault detection and isolation in internal combustion engines based on chaos analysis". Sensors 21(20): 6925. DOI: 10.3390/s21206925.
  • 6. Grabar Ivan, Andrii Ivanchenko, Volodymyr Lomakin, Dmytro Kalinkin, Oleksandr Kuharchuk. 2010. "Hardware and software complex for analyzing the operation of the MeMZ-2457 engine by rotation frequency fluctuation". Scientific Notes of the National Technical University 28: 151-156.
  • 7. Lomakin Volodymyr. 2018. "Decreasing of speed fluctuation of internal combustion engine by improving the flywheel design". Doctoral dissertation. Available at: http://diser.ntu.edu.ua/Lomakin_dis.pdf.
  • 8. Takens Floris. 1981. "Detecting strange attractors in turbulence". Dynamical Systems and Turbulence 898: 366-381.
  • 9. Holger Kantz, Thomas Schreiber. 2004. Nonlinear time series analysis. Cambridge University Press.
  • 10. Wolf Alan, Jack B. Swift, Harry L. Swinney, John A. Vastano. 1985. "Determining Lyapunov exponents from a time series". Physica D: Nonlinear Phenomena 16(3): 285-317. DOI: 10.1016/0167-2789(85)90011-9.
  • 11. Grassberger Peter, Itamar Procaccia. 1983. "Measuring the strangeness of strange attractors". Physica D: Nonlinear Phenomena 9(1-2): 189-208. DOI: 10.1016/0167-2789(83)90298-1.
  • 12. TheilerJames, Stephen Eubank, André Longtin, Bryan Galdrikian, J. Doyne Farmer. 1992. "Testing for nonlinearity in time series: the method of surrogate data". Physica D: Nonlinear Phenomena 58(1-4): 77-94. DOI: 10.1016/0167-2789(92)90102-S.
  • 13. Chaotic-engine-rpm-analysis project with raw data. Available at: https://github.com/VD45/chaotic-engine-rpm-analysis.
  • 14.Numpy 2.0. The fundamental package for scientific computing with Python. Available at: https://numpy.org/.
  • 15. Pandas. The fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language. Available at: https://pandas.pydata.org/.
  • 16. SciPy. Fundamental algorithms for scientific computing in Python. Available at: https://scipy.org/.
  • 17. Matplotlib. Visualization with Python. Available at: https://matplotlib.org/.
  • 18. SciKit. Machine Learning in Python. Available at: https://scikit-learn.org/stable/.
  • 19. Python Programming Language. Available at: https://www.python.org/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df4e3d8f-4bd2-42e2-8363-2039be65c805
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.