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Abstract
Wind has huge influence on take-off, landing and cruising of aircraft. Therefore measuring wind direction and 
speed as well as evaluating its structure are the most important tasks in meteorological support of flights. Wind 
shear, which is characterized by rapid changes of speed and/or direction, is one of the most hazardous phenom-
ena for aviation. This phenomenon exists mostly in low tropospheric jet streams, areas of active atmospheric 
fronts, near convective clouds and strong temperature inversions. The paper proves that wind shear is mainly 
dependent on non-uniform layout of ascending and descending air currents and shows that this phenomenon 
can be detected by using ground sensors (ultrasonic anemometers), remote sensing methods (sodars, radars, 
wind profilers) and data from numerical mesoscale models.

Introduction

Scientists of various areas have always been 
interested in the research of the boundary layer 
of the atmosphere. Its processes, structure and prin-
cipal parameters are at the basis of physics of the 
atmosphere. Theoretical and experimental work has 
resulted in credible forecasts of atmospheric evo-
lution, making it possible to predict the values of 
meteorological elements as well as particular types 
of atmospheric phenomena. This is crucially import-
ant when wind structure of its lowest levels is ana-
lyzed, especially when wind shear – hazardous for 
aviation – needs to be detected. Thanks to dynam-
ically developing aviation technology, safer aircraft 
flights are becoming possible. At the same time, 
current reports about aviation disasters confirm the 
great influence of unfavorable weather conditions on 
take-off and landing, especially as planes have low 
lift-to-drag ratios.

Vertical air currents

The vertical currents field is one of the most 
important variables describing the state of the atmo-
sphere. Numerous weather phenomena are caused 
by ascending or descending air currents. Vertical 
currents are very important for the development and 
evolution of pressure systems and frontal zones as 
well as the formation of cloud systems and precip-
itation. They are a crucial element of analysis and 
forecast of the dynamics of pressure systems (Chała-
dyniak & Jasiński, 2008). The vertical component of 
the wind field analyzed in the synoptic scale is of 
the order of a few centimeters per second. Standard 
meteorological measurements are made with accu-
racy of 1  m/s. Hence, it is difficult to make direct 
measurements of vertical currents. This quantity 
is determined indirectly using wind fields that are 
measured regularly. Two methods are commonly 
used to compute vertical currents: kinetic – based on 
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the continuity equation – and adiabatic – based on 
the thermodynamic energy equation. Both methods 
are referenced to an isobaric coordinate system, in 
which the ω(p) function is computed according to 
the following formula:
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written in the (x, y, z) coordinate system.
In large scale atmospheric flows, the horizontal 

wind is, in first approximation, considered to be geo-
strophic. We can therefore write that: V = Vg + Va 
but Vg = (ρf)–1k×∇p, which means that: Vg·∇p = 0. 
We can convert equation (1), using the equation of 
statics, to obtain:
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Analyzing the order of the components of the 
right hand side of equation (2) for large scale atmo-
spheric flows we obtain that the pressure changes 
during one day are as follows:

	 ∂p/∂t ~ 10 hPa

	 Va·∇p ~ 1 hPa

	 gρw ~ 100 hPa

Therefore we can use the following approximat-
ing relation:

	 ω = – gρw	 (3)

Since geostrophic vorticity, ζg, and wind, Vg, can 
be expressed using only the geopotential, Φ, the fol-
lowing equation:
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can be used to analyze vertical currents fields, ω, 
when the Φ and ∂Φ/∂t fields are available. Geopo-
tential tendency, χ = ∂Φ/∂t, is a basic forecast field 
used operationally in weather services. Despite the 
fact that upper air levels analyses are available only 
twice a day, the tendency approximation based on 
observations of geopotential at 12-hour intervals 
provides more accurate forecasts than other meth-
ods in use. This paper presents an alternative method 
based on vorticity and thermodynamic equations.

Omega equation

The omega equation was first presented by J.G. 
Charney in 1947. It enables to determine vertical 
currents fields, ω, exclusively on the basis of the 

spatial distribution of geopotential. To derive the 
omega equation we can use the mathematical defini-
tion of the baroclinic model (Charney, 1947):
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where σ is the parameter of the static stability of the 
atmosphere in the quasi-geostrophic approximation:
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The procedure proposed in the paper consists in 
eliminating the geopotential tendency χ from the 
above system of functions. To achieve this, we apply 
the ∇2 operator to equation (5):
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and we differentiate equation (6) against pressure, p:
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the differential operators on the right side of equa-
tions (7) and (8) are equal, that the term ∇2(∂χ/∂p) 
can be eliminated, resulting in:
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Equation (9) is the so-called classical ome-
ga equation and it only contains derivatives with 
respect to the spatial variables. This equation defines 
a method of determining the ω function that, unlike 
the continuity equation, is independent of the ageos-
trophic component of the wind field:
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By integrating equation (10) with respect to pres-
sure we obtain:
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where ps is the reference pressure (e.g. 1000 hPa or 
surface pressure) and p is the pressure at a selected 
level. 

Hence, direct measurements of wind are not 
necessary. Equation (9) does not require informa-
tion on the distribution of vorticity tendency. This 
means that in order to determine the ω field, it is 
sufficient to know the distribution of geopotential 
for a single observation time. On the other hand, the 
analyzed equation includes second order derivatives 
with respect to the vertical coordinate. The precise 
assessment of the specific expressions through mea-
surement data characterized by noise may be a very 
difficult task. The left side of equation (9) is not 
a classical Laplace operator and the σ coefficient that 
appears at the vertical coordinate is dependent on 
static stability of the atmosphere. Analysis of com-
ponents in the omega equation (9) shows that the 
differential operator defined as A (with the assump-
tion that σ = const.) corresponds to operator A in the 
geopotential tendency equation (Hoskins, Draghici 
& Davis, 1978):
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 Since the forces defined on the right hand side 
of equation (9) have their maxima in the middle of 
the troposphere and the ω function equals zero at the 
lower and upper boundaries of the atmosphere, it is 
possible to assume that ω has sinusoidal courses both 
in the horizontal plane and along the vertical axis:
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Introducing solution (13) to equation (9) gives:
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Expression A is thus proportional to –ω. Having 
in mind that ω is proportional to –ω (see equation 
(5)), we conclude that ω  <  0 results in ascending 
air currents and consequently A is proportional to 
vertical velocity. This means that positive values of 

the sum of B and C result in ascending air currents, 
while negative values result in descending currents. 
Expression B in equation (12) is called total vorticity 
advection. Expression B in equation (9) is propor-
tional to the value of the increase of the total vortici-
ty advection with altitude and it is sometimes called 
differential vorticity. Figure 1 illustrates that:
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	 < 0 over a high pressure area H 
	 > 0 over a high pressure area L	 (15)

The total vorticity advection therefore corre-
sponds to ascending air currents over ground low 
pressure areas and descending air currents over 
ground high pressure areas. Expression C in equa-
tion (12) is the horizontal Laplace function of the 
specific volume advection. The vertical velocity 
value due to this component can be determined by 
means of the following formula:
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In case of warm air advection, expression C is 
positive. Hence, for very weak or inexistent total 
vorticity advection, the vertical velocity, ω, is also 
positive. For cold air advection, expression C is 
negative. Hence, for very weak or inexistent total 
vorticity advection, the vertical velocity, ω, is also 
negative.

Figure 2 illustrates ascending currents occur on 
the eastern side of a ground low pressure system in 
the area of the warm front while descending currents 
occur behind the cold front on the western side of 
the ground low pressure system. Further analysis 
indicates that the vertical currents and temperature 
advection sustain the geostrophic character of the 

Descending
air currents

Ascending
air currents

w<0 w>0

West East

Figure 1. Geopotential of the 500  hPa (solid line) and the 
1000  hPa (dashed line) level surfaces presenting areas of 
strong vertical movements caused by total vorticity advec-
tion. H – high pressure area, L – low pressure area (Holton, 
1992)
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upper vorticity field. Warm air advection increases 
the thickness of the 500/1000 hPa layer in the area 
of an upper ridge at the 500 hPa surface. The geo-
potential increases and anti-cyclonic vorticity in the 
region of the ridge guarantee the preservation of 
geostrophic balance. Since vorticity advection can-
not increase the anti-cyclonic vorticity in the upper 
ridge, the horizontal divergence has to balance the 
negative tendency of vorticity. According to mass 
conservation, divergence of the upper vorticity field 
is compensated by ascending air currents. Descend-
ing currents occur in the area of the trough at the 
500 hPa surface (cold air advection region).

Wind shear

Wind shear poses the greatest threat to aircraft 
during take-off and landing. Wind shear may result 
in changing flight path or throwing off aerodynam-
ic balance. According to ICAO, among all accidents 
occurring during landing, wind shear is responsible 
for over 20% of cases in which the aircrafts drive off 
the runway and 10% of short landings. This informa-
tion itself shows how important wind shear detection 
is for direct meteorological support. Airport systems 
are required to provide credible information about 
the threat of wind shear occurrence so that decisions 
about continuing or breaking the take-off or landing 

procedures can be made. The detection of wind 
shear using only ground sensors is extremely diffi-
cult because of its limited space and short time of 
occurrence, justifying the efforts of meteorologists 
to find more credible methods for wind shear detec-
tion. Several observations have allowed to conclude 
that a strong stream of descending air is formed near 
convective clouds, and its speed can be as high as 
75–110  km/h or even 135  km/h. When the stream 
reaches the ground it flows horizontally in all direc-
tions, creating strong whirls of air within 2–5 km 
radius of the center of the descending stream and 
up to 600 meters above the ground. The maximum 
speed of the flowing air is estimated at 100  km/h 
(Djurić, 1994). The mechanism of wind shear cre-
ation and flying in such conditions are presented in 
the Figures 3 and 4.

We now move on to analyze the case of wind 
speed increase with height. During landing, the plane 
travelling into wind enters into the lower layers with 
weaker head wind, therefore its lift decreases gradu-
ally. As a result, the plane’s actual line of flight runs 
below the assumed approach path, the aircraft gets 
mushing and despite increased drag the landing may 

Figure 4. Influence of wind shear on take-off and landing. Expected (dashed line) and actual (solid line) flight path

Runway

Figure  3.  Influence of strong descending air currents on 
a flying aircraft

Descending
air currents
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[m]
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Figure 2. Geopotential of the 500  hPa (solid line) and the 
1000  hPa (dashed line) level surfaces presenting areas of 
strong vertical movements caused by temperature advec-
tion. H – high pressure area, L – low pressure area (Holton, 
1992)
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be short. During take-off, the ascending aircraft gets 
into layers with stronger head wind and it is affected 
by stronger lift than in lower layers. Therefore its 
actual take-off path angle is higher than expected. 
This may result in exceeding the stalling angle and 
mushing of the aircraft.

During take-off and landing the speed of an air-
craft fluctuates between 200 and 280  km/h. When 
the aircraft is flying through descending air currents 
it is subjected to winds of different speeds and direc-
tions. Sudden short-term changes in airspeed of the 
plane result in rapid increase and decrease of lift, 
which are especially dangerous at low altitudes and 
at low speed.

Wind shear detection

A few methods of detecting wind shear exist. The 
following are some examples of equipment used to 
acquire data for assessing the wind conditions favor-
able for the phenomenon (Figures 5–8).

Figure 5. Ultrasonic anemometer

Figure 6. Sodar (Schwechat airport)

Figure 7. Radar wind profiler (White Sands, USAF)

Figure 8. Radar (Brzuchania)

Vertical air current field layouts acquired from the 
WRF (Weather Research and Forecasting) numerical 
mesoscale model are presented in the Figures 9–11.

Figure 9. Field of the vertical component of wind speed at 
the 10th computational surface of the WRF model

Figure 10. Vertical component of wind speed profile along 
a meridional line
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Figure 11. Vertical component of wind speed profile along 
a latitudinal line

Conclusions

The information provided here shows how 
important wind shear detection is for direct mete-
orological support. Airport meteorological mea-
surement systems are required to provide credible 
information on the probability of occurrence of wind 
shear so that decisions on continuing or aborting 
take-off or landing can be made. The wind shear 
phenomenon is almost impossible to detect by using 
only ground sensors (ultrasonic anemometers) due 
to its limited range and brief occurrence. Therefore, 

one can understand the meteorologists’ efforts to 
find credible wind shear detection methods. In cases 
where direct measuring is technically problematic 
or impossible because of the area size, remote sens-
ing methods (sodars, radars, wind profilers) become 
especially important. Effective and credible detec-
tion of wind shear is also possible based on detailed 
analysis of vertical air current fields available from 
numerical weather prediction models.
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