PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forecasting process parameters on weld nugget hardness of filler added friction stir welded dissimilar aluminium alloys 5052 and 6082 joints

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article deals with the optimization of friction stir welding process parameters with filler ratios on dissimilar Aluminium alloy groups. For this purpose, 6 series Aluminium alloy 6082 and 5 series Aluminium alloy 5052 were taken. Microhardness property was conducted under various rotational speeds, welding speed, plunge depth, Center distance between the holes and filler mixing ratio. The Central Composite Design (CCD), the most commonly used Response Surface Methodology (RSM), is considered to develop the prediction equation. A validation analysis is carried out, and the results were compared with the relative impact of input parameters on weld nugget microhardness. It is observed that the increase in welding speed with plunge depth and filler ratio result in the increase of weld nugget microhardness up to a maximum value. The maximum weld nugget hardness of fabricated joint was obtained with the welding process parameters combination of 1000 rpm rotational speed, 125 mm/min welding speed, 0.15 mm plunge depth, 2 mm centre distance between the holes, and filler ratio of 95% Mg and 5% Cr.
Rocznik
Strony
103--112
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Production Engineering, Government College of Technology, Coimbatore, Tamilnadu, India
autor
  • Department of Production Engineering, Government College of Technology, Coimbatore, Tamilnadu, India
  • Institute of Materials Joining, Shandong University, Jinan, China
Bibliografia
  • 1. Thomas, WM, Nicholas, ED, Needham, JC, Murch, MG, Temple-Smith, P & Dawes, CJ (1993), Friction stir butt welding (The Welding Institute TWI), UK patent 9125978.8.
  • 2. Mohammad Amin Bozorgzadeh & Mohd Hasbullah Idris (2015), ‘Friction Stir Welding International’, Journal of Review in Life Sciences, Vol. 5, pp. 72-75.
  • 3. Je-Hyoung Cho, Myung-Hyun Kim & Jun-Woong Choi, 2014, ‘FSW Properties of Aluminium alloy 5000/6000 for Small Boat’, Journal of Welding and Joining, Vol. 32, No. 1, pp. 34-39.
  • 4. DG Mohan,Gopi S, (2021), Influence of In-situ induction heated friction stir welding on tensile, microhardness, corrosion resistance and microstructural properties of martensitic steel. Engineering Research Express, 3(2). https://doi.org/10.1088/2631-8695/abfe1d
  • 5. Gopi S, DG Mohan, (2021), Evaluating the Welding Pulses of Various Tool Profiles in Single-Pass Friction Stir Welding of 6082-T6 Aluminium Alloy. Journal of Welding and Joining, Vol. 39, No 39(3), pp. 284–294. https://doi.org/10.3345/kjp.2021.39.3.284
  • 6. A.Sasikumar, S Gopi, Dhanesh G Mohan, (2019), Effect of Magnesium and Chromium Fillers on the Microstructure and Tensile strength of Friction Stir Welded Dissimilar Aluminium Alloys, Materials Research Express, Vol. 6.
  • 7. Kesharwani, RK, Panda, SK & Pal, SK (2014), ‘Multi Objective Optimization of Friction Stir Welding Parameters for Joining of Two Dissimilar Thin Aluminium Sheets’, Procedia Materials Science, Vol. 6, pp. 178–187.
  • 8. R.W. Fonda, P.S. Pao, H.N. Jones, C.R. Feng, B.J. Connolly, A.J. Davenport, (2009), Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456, Material Science Engineering , Vol. 519, pp.1-8.
  • 9. Aditya R. Prabhukhot , (2015), Effect of Heat Treatment on Hardness and Corrosion Behavior of 6082-T6 Aluminium Alloy in Artificial Sea Water, International Journal of Materials Science and Engineering, Vol. 3, pp. 287-294
  • 10. P H Shaha, VishveshBadhekab, (2016), An experimental investigation of temperature distribution and joint properties of Al 7075 T651 friction stir welded aluminium alloys, Procedia Technology, vol. 23, pp. 543 – 550.
  • 11. H M Anil Kumar, V VenkataRamana, MayurPawar, (2018), Experimental Study on Dissimilar Friction Stir welding of Aluminium Alloys (5083-H111 and 6082-T6) to investigate the mechanical properties, Materials Science and Engineering, Vol. 330.
  • 12. H. S. Patil1, S. N. Soman, (2014), Corrosion Behaviour of Friction Stir Welded Aluminium Alloys AA6082-T6, American Journal of Materials Engineering and Technology, Vol. 2, pp. 29-33.
  • 13. DG Mohan, Gopi S, Rajasekar V, (2018), Effect of induction heated friction stir welding on corrosive behaviour, mechanical properties and microstructure of AISI 410 stainless steel. Indian Journal of Engineering and Materials Sciences, Vol. 25, No. 3, pp. 203-208.
  • 14. Jae-HyungChoa.b,Won Jae Kima, Chang Gil Leea, (2014), Evolution of microstructure and mechanical properties during friction stir welding of A5083 and A6082, Procedia Engineering, Vol. 81, pp. 2080-2085.
  • 15. Dhanesh G. Mohan. And Gopi S., (2018). Induction assisted friction stir welding: a review, Australian Journal of Mechanical Engineering, Vol. 18, No.1, pp.119-123.
  • 16. A. Silva-Magalhaes, J. De Backer, J. Martin, G. Bolmsjo, (2019), In-situ temperature measurement in friction stir welding of thick section aluminium alloys, Journal of Manufacturing Processes, Vol. 39, pp. 12-17.
  • 17. Hwang Y-M, Kang Z-W, Chiou Y-C, Hsu H-H, (2008), Experimental study on temperature distributions within the workpiece during friction stir welding of aluminium alloys, International Journal of Machine Tools and Manufacture, Vol. 48, pp. 778-787.
  • 18. Zhang Z, Liu YL, Chen JT, (2009), Effect of shoulder size on the temperature rise and the material deformation in friction stir welding, International Journal of Advanced Manufacturing Technology, Vol. 45, pp. 889-95.
  • 19. Sakthivel T, Sengar GS, Mukhopadhyay J, (2009), Effect of welding speed on microstructure and mechanical properties of friction-stir-welded aluminum. International Journal of Advanced Manufacturing Technology, Vol. 43, pp. 468-73.
  • 20. Dhanesh G. Mohan, Gopi, S., & Sasikumar, A., (2021). Examining the Mechanical and Metallurgical Properties of Single Pass Friction Stir Welded Dissimilar Aluminium Alloys Tee Joints. SVOA Materials Science &Technology, Vol. 3, No. 1, pp.6–12.
  • 21. Dhanesh G. Mohan, S. Gopi, V.Rajasekar, (2018), Mechanical and corrosion resistance properties of hybrid-welded stainless steel, Materials Performance, Vol. 57.
  • 22. Hatamleh O, Singh PM, Garmestani H, (2009), Corrosion susceptibility of peened friction stir welded 7075 aluminumalloy joints, Corrosion Science, Vol. 51, pp. 135-43.
  • 23. Rafi HK, Ram GDJ, Phanikumar G, Rao KP, (2010), Microstructure and tensile properties of friction welded aluminium alloy AA7075-T6, Materials & Design, Vol. 31, pp. 2375-2380.
  • 24. Mohan D.G., Tomków J., Gopi S. (2021) Induction assisted hybrid Friction Stir Welding of dissimilar materials AA5052 aluminium alloy and X12Cr13 stainless steel. Advances in Materials Science, Vol. 21, issue 3, in press.
  • 25. Je-Hyoung Cho, Myung-Hyun Kim & Jun-Woong Choi, (2014), FSW Properties of Aluminium alloy 5000/6000 for Small Boat, Journal of Welding and Joining, vol. 32, no. 1, pp. 34-39.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df48e2d4-a89b-459d-92b6-23bc4375b227
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.