Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The results of the forging process in open dies of the powder metallurgy (PM) Ti-6Al-4V alloy, carried out at the temperature above β-transus and at a high strain rate were presented. As an initial material for the research relatively cheap elemental powders were used. This approach gives a real chance for the implementation of the developed technologies. As the range of phase transition temperature in titanium alloys is influenced also by the technology of their production, the β-transus temperature was estimated for the PM Ti-6Al-4V alloy. Finite element method (FEM) numerical analysis of the forging process at the temperature of 1000 °C and high strain rate was performed. The results obtained by the FEM modeling were verified under industrial conditions. The forging trials were made at the temperature of 1000 °C on a screw press operating at a speed of 250 mm s-1. For comparison, the alloy was also studied in as-cast and hot-rolled conditions, which is widely used as a feedstock. The influence of the method of manufacturing feedstock on the microstructure and selected properties of the forgings was determined. This approach allowed for a qualitative assessment of the PM material. The forging process in open dies of two different feedstocks led to the production of forgings with a uniform and similar lamellar microstructure. Thus, it was shown that the heating conditions, the parameters of the forging process, and the method of cooling the product after forging have a decisive influence on the microstructure condition of the forgings shaped in the temperature range of the β phase.
Czasopismo
Rocznik
Tom
Strony
art. no. e102, 2023
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30‑059 Krakow, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30‑059 Krakow, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30‑059 Krakow, Poland
autor
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40‑019 Katowice, Poland
autor
- Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universitat Dresden, Holbeinstrase 3, 01307 Dresden, Germany
autor
- Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universitat Dresden, Holbeinstrase 3, 01307 Dresden, Germany
Bibliografia
- 1. Motyka M. Titanium alloys and titanium-based matrix composites. Metals. 2021;11(9):1463.
- 2. Majorell A, Srivatsa S, Picu RC. Mechanical behavior of Ti6Al4V at high and moderate temperatures-part I: experimental results. Mater Sci Eng A. 2002;326(2):297-305.
- 3. Cui C, Hu BM, Zhao L, Liu S. Titanium alloy production technology, market prospects and industry development. Mater Des. 2011;32(3):1684-91.
- 4. Ziaja W, Motyka M, Kubiak K, Sieniawski J. Primary creep behaviour of two-phase titanium alloy with various microstructure. Arch Metall Mater. 2016;61(2):683-8. https://doi.org/10.1515/amm-2016-0116.
- 5. Jiang YQ, Lin YC, Wang GQ, Pang GD, Chen MS, Huang ZC. Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β region. J Alloys Compd. 2021;870:159534.
- 6. Liu YX, Chen W, Li ZQ, Tang B, Han XQ, Yao G. The HCF behavior and life variability of a Ti-6Al-4V alloy with transverse texture. Int J Fatigue. 2017;97:79-87.
- 7. Li G, Sun C. High-temperature failure mechanism and defect sensitivity of TC17 titanium alloy in high cycle fatigue. J Mater Sci Technol (Shenyang, China). 2022;122:128-40.
- 8. Khan MA, Williams RL, Williams DF. In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials. 1996;17:2117-26.
- 9. Zhou X, Xu D, Geng S, Fan Y, Yang C, Wang Q, Wang F. Microstructural evolution and corrosion behavior of Ti-6Al-4V alloy fabricated by laser metal deposition for dental applications. J Mater Res Technol. 2021;14:1459-72.
- 10. Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopedic applications. Mater Sci Eng C. 2019;102:844-62.
- 11. Szkliniarz W, Chrapoński J, Kościelna A, Serek B. Substructure of titanium alloys after cyclic heat treatment. Mater Chem Phys. 2003;81:538-41.
- 12. Yan-Wei S, Zhi-Meng G, Jun-Jie H, Dong-Hua Y. Effect of spheroidization of Ti-6Al-4V powder on characteristics and rheological behaviors of gelcasting slurry. Procedia Eng. 2012;36:299-306.
- 13. Heinl P, Muller L, Korner C, Singer RF, Muller FA. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4:1536-44.
- 14. Bolzoni L, Ruiz-Navas EM, Gordo E. Flexural properties, thermal conductivity and electrical resistivity of prealloyed and master alloy addition powder metallurgy Ti-6Al-4V. Mater Des. 2013;52:888-95.
- 15. Haase C, Lapovok R, Ng HP, Estrin Y. Production of Ti-6Al-4V billet through compaction of blended elemental powders by equal-channel angular pressing. Mater Sci Eng A. 2012;550:263-72.
- 16. Boyer R, Welsch G, Collings EW. Materials properties handbook: titanium alloys. Materials Park: ASM International; 1994.
- 17. Szkliniarz A, Szkliniarz W. Effect of carbon content on the microstructure and properties of Ti-6Al-4V alloy. Arch Metall Mater. 2020;65(3):1197-204.
- 18. Weston NS, Jackson M. FAST-forge- a new cost-effective hybrid processing route for consolidating titanium powder into near net shape forged components. J Mater Process Technol. 2017;243:335-46.
- 19. Motyka M. Martensite formation and decomposition during traditional and AM processing of two-phase titanium alloys- an overview. Metals. 2021;11:481. https://doi.org/10.3390/met11030481.
- 20. Verleysen P, Peirs J. Quasi-static and high strain rate fracture behaviour of Ti6Al4V. Int J Impact Eng. 2017;108:370-88.
- 21. Lei L, Zhao Y, Zhao Q, Wu C, Huang S, Jia W, Zeng W. Impact toughness and deformation modes of Ti-6Al-4V alloy with different microstructures. Mater Sci Eng A. 2021;801:140411.
- 22. Wojtaszek M, Śleboda T, Czulak A, Weber G, Hufenbach WA. Quasi-static and dynamic tensile properties of Ti-6Al-4V alloy. Arch Metall Mater. 2013;58(4):1261-5.
- 23. Semiatin SL, Goetz RL, Seetharaman V, Shell EB, Ghosh AK. Cavitation and failure during hot forging of Ti-6Al-4V. Metall Mater Trans A. 1999;30(5):1411-24.
- 24. Warwick JLW, Jones NG, Bantounas I, Preuss M, Dye D. In situ observation of texture and microstructure evolution during rolling and globularization of Ti-6Al-4V. Acta Mater. 2013;61(5):1603-15.
- 25. Seshacharyulu T, Medeiros SC, Frazier WG, Prasad YVRK. Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure. Mater Sci Eng A. 2002;325(1-2):112-25.
- 26. Careau SG, Tougas B, Ulate-Kolitsky E. Effect of direct powder forging process on the mechanical properties and microstructural of Ti-6Al-4V ELI. Materials. 2021;14:4499.
- 27. Wojtaszek M, Korpała G, Śleboda T, Zyguła K, Prahl U. Hot processing of powder metallurgy and wrought Ti-6Al-4V alloy with large total deformation: physical modeling and verification by rolling. Metall Mater Trans A. 2020;51(11):5790-805.
- 28. Wojtaszek M, Śleboda T. Thermomechanical processing of P/M Ti-6Al-4V alloy. In: METAL 2013, 22nd international conference on metallurgy and materials. Ostrava: TANGER; 2013. p. 364-69.
- 29. Qiu JW, Liu Y, Liu B, Liu YB, Wang B, Ryba E, Tang HP. Optimizing the hot-forging process parameters for connecting rods made of PM titanium alloy. J Mater Sci. 2012;47:3837-48.
- 30. Kanou O, Fukada N, Hayakawa M. The effect of Fe addition on the mechanical properties of Ti-6Al-4V alloys produced by the prealloyed powder method. Mater Trans. 2016;57(5):681-5.
- 31. Liang C, Ma MX, Jia MT, Raynov S, Yan JQ, Zhang DL. Microstructures and tensile mechanical properties of Ti-6Al-4V bar/disk fabricated by powder compact extrusion/forging. Mater Sci Eng A. 2014;619:290-9.
- 32. Jia M, Zhang D, Liang J, Gabbitas B. Porosity, microstructure, and mechanical properties of Ti-6Al-4V alloy parts fabricated by powder compact forging. Metall Mater Trans A. 2017;48:2015-29.
- 33. El-Soudani SM, Yu K, Crist EM, Sun F, Campbel MB, Esposito TS, Phillips JJ, Moxon V, Duz VA. Optimization of blended-elemental powder-based titanium alloy extrusions for aerospace applications. Metall Mater Trans A. 2013;44:890-910.
- 34. Froes FH. Powder metallurgy of titanium alloys, vol. 1. Amsterdam: Elsevier; 2013. p. 202-40.
- 35. Hu H, Xu Z, Dou W, Huang F. Effects of strain rate and stress state on mechanical properties of Ti-6Al-4V alloy. Int J Impact Eng. 2020;145: 103689.
- 36. Wang G, Xu L, Wang Y, Zheng Z, Cui Y, Yang R. Processing maps for hot working behavior of PM alloy. J Mater Sci Technol (Shenyang, China). 2011;27:893-8.
- 37. Fang XR, Wu J, Ou X, Yang FQ. Microstructural characterization and mechanical properties of Ti-6Al-4V alloy subjected to dynamic plastic deformation achieved by multipass hammer forging with different forging temperatures. Adv Mater Sci Eng. 2019;2019:1-12.
- 38. Bruschi S, Poggio S, Quadrini F, Tata ME. Workability of Ti-6Al-4V alloy at high temperatures and strain rates. Mater Lett. 2004;58(27-28):3622-9.
- 39. Astarita A, Ducato A, Fratini L, Paradiso V, Scherillo F, Squillace A, Testani C, Velotti C. Beta forging of Ti-6Al-4V: microstructure evolution and mechanical properties. Key Eng Mater. 2013;554-557:359-71.
- 40. Lee DG, Lee S, Lee CS, Hur S. Effects of microstructural factors on quasi-static and dynamic deformation behaviors of Ti-6Al-4V alloys with Widmanstatten structures. Metall Mater Trans A. 2003;34(11):2541-8.
- 41. Pang GD, Lin YC, Jiang YQ, Zhang XY, Liu XG, Xiao YW, Zhou KC. Precipitation behaviors and orientation evolution mechanisms of α phases inTi-55511 titanium alloy during heat treatment and subsequent hot deformation. Mater Charact. 2020;167: 110471.
- 42. Roy S, Suwas S. The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti-6Al-4V-0.1B. J Alloys Compd. 2013;548(4):110-25.
- 43. Abbasi SM, Momeni A. Effect of hot working and post-deformation heat treatment on microstructure and tensile properties of Ti-6Al-4V alloy. Trans Nonferrous Met Soc China. 2011;21(8):1728-34.
- 44. Rao KP, Prasad YVRK. Advanced techniques to evaluate hot workability of materials. In: Comprehensive materials processing, vol. 3. Oxford: Elsevier Ltd; 2014. p. 397-426.
- 45. Guo RP, Xu L, Zong BY, Yang R. Preparation and ring rolling processing of large size Ti-6Al-4V powder compact. Mater Des. 2016;99:341-8.
- 46. Ivasishin OM, Eylon D, Bondarchuk VI, Savvakin DG. Diffusion during powder metallurgy synthesis of titanium alloys. Book series. Defect Diffus Forum. 2008;277:177-85.
- 47. Cantin G, Stone N, Alexander D, Gibson M, Ritchie D, Wilson R, Yousuff M, Rajakumar R, Rogers KJ. Production of Ti-6Al-4V strip by direct rolling of blended elemental powder. Mater Sci Forum. 2010;654-656:807-10.
- 48. Łukaszek-Sołek A, Krawczyk J. Processing maps of the Ti-6Al-4V alloy in a forging process design. Key Eng Mater. 2015;641:190-5.
- 49. Ning Z, Fu MW, Hou H, Yao Y, Guo H. Hot deformation behavior of Ti-5.0Al-2.40Sn-2.02Zr-3.86Mo-3.91Cr alloy with an initial lamellar microstructure in the α + β phase field. Mater Sci Eng A. 2011;528:1812-8.
- 50. Ning YQ, Xie BC, Liang HQ, Li H, Yang XM, Guo HZ. Dynamic softening behavior of TC18 titanium alloy during hot deformation. Mater Des. 2015;71:68-77.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df47905d-8fb2-404e-b4c7-a239a7f1cfea