PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Parallel Graded-Mesh FDTD Algorithm for Human–Antenna Interaction Problems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The finite difference time domain method (FDTD) is frequently used for the numerical solution of a wide variety of electromagnetic (EM) problems and, among them, those concerning human exposure to EM fields. In many practical cases related to the assessment of occupational EM exposure, large simulation domains are modeled and high space resolution adopted, so that strong memory and central processing unit power requirements have to be satisfied. To better afford the computational effort, the use of parallel computing is a winning approach; alternatively, subgridding techniques are often implemented. However, the simultaneous use of subgridding schemes and parallel algorithms is very new. In this paper, an easy-to-implement and highly-efficient parallel graded-mesh (GM) FDTD scheme is proposed and applied to human–antenna interaction problems, demonstrating its appropriateness in dealing with complex occupational tasks and showing its capability to guarantee the advantages of a traditional subgridding technique without affecting the parallel FDTD performance.
Rocznik
Strony
45--52
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
  • Innovation Engineering Department, University of Salento, Lecce, Italy
autor
  • Innovation Engineering Department, University of Salento, Lecce, Italy
Bibliografia
  • 1.Zubal C, Harrell CR, Smith EO, Rattner Z, Gindi G, Hoffer PB. Computerized 3D segmented human anatomy. Med Phys. 1994;21(2):299–302.
  • 2.Mason PA, Ziriax JM, Hurt WD, Walters TJ, Ryan KL, Nelson DA, et al. Recent advancements in dosimetry measurements and modeling. In: Klauenberg BJ, Miklavcic D, editors. Radio frequency radiation dosimetry. Norwell, MA, USA: Kluwer; 2000. p. 141–55.
  • 3.Yee KS. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag. 1966;AP-14(4):302–7.
  • 4.Catarinucci L, Palazzari P, Tarricone L. Human exposure to the near field of radiobase antennas: a full-wave solution using parallel FDTD. IEEE Trans Microw Theory Tech. 2003;51:935–40.
  • 5.Guiffaut C, Mahdjoubi K. A parallel FDTD algorithm using the MPI library. IEEE Antennas Propagat Mag. 2001;43(2):94–103.
  • 6.Yu W, Mittra R. A new higher-order subgridding method for finite difference time domain (FDTD) algorithm. IEEE Ant and Prop Society Int Symp. 1998;1:608–11.
  • 7.Okoniewski M, E. Okoniewska E, Stuchly MA. Three-dimensional subgridding algorithm for FDTD. IEEE Trans Antennas Propag. 1997;45;422–9.
  • 8.Taflove A, Brodwin ME. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans Microw Theory Tech. 1975;MTT-23(8):623–30.
  • 9.Taflove A. Computational electrodynamics, the finite difference time-domain method. Norwood, MA, USA: Artech House; 1995.
  • 10.Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans Electromagn Compat. 1981;EMC-23(4):377–82.
  • 11.Berenger JP. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys. 1984;114;185–200.
  • 12.Berenger JP. Perfectly matched layer for the FDTD solution of wave-structure interaction problems. IEEE Trans Microw Theory Tech. 1996;44:110–7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df46fbff-47a1-49f0-a353-2087708d2b18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.