PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of gravity signature across the floating basement of Bundelkhand granite using 3D Euler deconvolution, source edge detection technique and various gravity gradient analyses

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bundelkhand granitic massif (BGM) encompasses various granitic plutonism in early Proterozoic age which contains granitic sample of massif within the age 2560±106 m.y. The Bundelkhand granitic massif is formed by various granitic upward intrusions. The gravity data suggest that it exhibits low gravity over the higher-gravity zone inside the Bundelkhand massif. It is suggested that due to the tectonic activity gravity variation takes place and the Bundelkhand granitic massif formed. Younger intrusive dykes, metasedimentary and gneissic rocks, older enclaves of metabasic, are supposed to be present in the zone. The present study has been carried the interpretation of gravity signature using various gravity gradient analyses of Bouguer gravity data in the Bundelkhand granitic belt which is one of the floating basement areas. The various gravity derivatives are analyzed, and it suggests about the source edge locations and the delineation pattern. Three-dimensional Euler deconvolution analysis has been carried out using specified structural index (SI) and different window sizes (WS). Apart from this, tilt derivative (Tilt), horizontal tilt derivative (TDX), analytical signal (ASA), total horizontal derivatives (THDR) and source edge detection (SED) have been studied. These various derived results are superimposed with one another map, and the results are correlated for understanding various lineament pattern including different strike and dip direction and different source depth locations. The integrated results look well correlated and provide value addition to get some geological consequences and better understanding the study area.
Czasopismo
Rocznik
Strony
1519--1537
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
  • Department of Geophysics, Oil India Limited, Duliajan, Assam, India
Bibliografia
  • 1. Basu AK (1986) Geology of parts of the Bundelkhand Granite Massif, Central India. Rec Geol Surv India Spec Publ 117:61–124
  • 2. Cooper GRJ, Cowan DR (2006) Enhancing potential field data using filters based on the local phase. Comput Geosci 32:1585–1591. https://doi.org/10.1016/j.cageo.2006.02.016
  • 3. Cooper GRJ (2002) An improved algorithm for the Euler deconvolution of potential field data. Lead Edge 21(12):1197–1198. https://doi.org/10.1190/1.1536132
  • 4. Coraggio F, Bernardelli P, Gabbriellini G (2012) Structural reconstruction using potential field data in hydrocarbon exploration, SEG Las Vegas 2012 annual meeting.https://doi.org/10.1190/segam2012-0983.1
  • 5. Fairhead JD, Williams SE (2006) Evaluating normalized magnetic derivatives for structural mapping, SEG 2006 New Orleans extended abstract. https://doi.org/10.1190/1.2370388
  • 6. Fairhead JD, Salem A, Cascone L, Hammil M, Masterton S, Samson E (2011) New developments of the magnetic tilt-depth methodto improve structural mapping of sedimentary basins. Geophys Prospect 59:1072–1086. https://doi.org/10.1111/j.1365-2465-2478.2011.01001.x
  • 7. Fairhead D, Williams S, Salem AB (2007) Structural mapping from high resolution aeromagnetic data in Namibia using normalized derivatives. In: EGM 2007 international workshop, Italy, April 15–18, 2007
  • 8. Fedi M (2007) DEXP: a fast method to determine the depth and the structural index of potential fields sources. Geophysics 72(1):l1–l11. https://doi.org/10.1190/1.2399452
  • 9. Ferreira FJ, de Souza J, de B e S Bongiolo A, de Castro LG (2013) Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics 78(3):J33–J41. https://doi.org/10.1190/geo2011-0441.1
  • 10. FitzGerald D, Reid AB, McInerney P (2004) New discrimination techniques for Euler deconvolution. Comput Geosci 30(5):461–469. https://doi.org/10.1016/j.cageo.2004.03.006
  • 11. Francisco JFF, Jeferson DS, Alessandra DB, Luís GDC (2013) Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics 78(3):J33–J41. https://doi.org/10.1190/geo2011-0441.1
  • 12. Ghosh GK (2015) Interpretation of gravity anomaly and crustal thickness mapping of Narmada-Son lineament in central India. J Geol Soc India 86(3):263–274. https://doi.org/10.1007/s12594-015-0311-7
  • 13. Ghosh GK (2016a) Interpretation of gravity data using 3D Euler deconvolution, tilt angle, horizontal tilt angle and source edge approximation of the North-West Himalaya. Acta Geophys 64(4):1112–1138. https://doi.org/10.1515/acgeo-2016-0042
  • 14. Ghosh GK (2016b) Magnetic data interpretation for the source-edge locations in parts of the tectonically active transition zone of the Narmada-Son Lineament in Central India. Pure Appl Geophys 173(2):555–571. https://doi.org/10.1007/s00024-015-1082-1
  • 15. Ghosh GK (2018) Automatic delineation of structural boundaries using curvature analysis of Bouguer gravity data in parts of Northwest Himalaya. J Geol Soc India 91(5):589–595. https://doi.org/10.1007/s12594-018-0909-7
  • 16. Ghosh GK, Singh CL (2014) Spectral analysis and Euler deconvolution technique of gravity data to decipher the basement depth in the Dehradun-Badrinath area. J Geol Soc India 83:501–512. https://doi.org/10.1007/s12594-014-0077-3
  • 17. Grauch VJS, Hudson MN, Minor SA (2001) Aeromagnetic expression of faults that offset basin fill, Albuquerque basin, New Mexico. Geophysics 66:707–720. https://doi.org/10.1190/1.1444961
  • 18. Green R, Stanley JM (1975) Application of a Hilbert transform method to the interpretation of surface-vehicle magnetic data. Geophys Prospect 23:18–27. https://doi.org/10.1111/j.1365-2478.1975.tb00677.x
  • 19. Jokhon Ram J (2005) Hydrocarbon exploration in onland frontier basins of India-perspective and challenges. J Palaeontol Soc India 50:1–16
  • 20. Jokhan Ram J, Shukla SN, Pramanik AG, Varma BK, Chandra G, Murthy MSN(1996) Recent investigations in the Vindhyan basin: Implications for the basin tectonics. In: Bhattacharya A (ed) Recent advances in Vindhyan Geology. Mem. Geol. Soc. India, vol 36, pp 267–286
  • 21. Kaur P, Zeh A, Chaudhri N (2014) Characterisation and U-Pb–Hf isotope record of the 3.55 Ga felsic crust from the Bundelkhand Craton, Northern India. Precambrian Res 255:236–244. https://doi.org/10.1016/j.precamres.2014.09.019
  • 22. Klingele EE, Marson I, Kahle HG (1991) Automatic interpretation of gravity gradiometric data in two dimensions: vertical gradient. Geophys Prospect 39:407–434. https://doi.org/10.1111/j.1365-2478.1991.tb00319.x
  • 23. Lahti I, Karinen T (2010) Tilt derivative multiscale edges of magnetic data. Lead Edge 29:24–29. https://doi.org/10.1190/1.3284049
  • 24. Malviya VP, Arima M, Pati JK, Kaneko Y (2006) Petrology and geochemistry of metamorphosed basaltic pillow lava and basaltic komatiite in Mauranipur area: subduction related volcanism in Archean Bundelkhand craton, Central India. J Miner Petrol Sci 101:199–217
  • 25. Marson I, Klingele EE (1993) Advantages of using the vertical gradient of gravity for 3-D interpretation. Geophysics 58(11):1588–1595. https://doi.org/10.1190/1.1443374
  • 26. Melo FF, Barbosa VCF, Uieda L, Oliveira VC Jr, Silva JBC (2013) Estimating the nature and the horizontal and vertical positions of 3D magnetic sources using Euler deconvolution. Geophysics 78(6):J87–J98. https://doi.org/10.1190/geo2012-0515.1
  • 27. Mikhailov V, Galdeano M, Gvishiani A, Agayan S, Bogoutdinov S, Graeva E, Sailhac P (2003) Application of artificial intelligence for Euler solutions clustering. Geophysics 68(1):168–180. https://doi.org/10.1190/1.1543204
  • 28. Miller HG, Singh V (1994) Potential field tilt—a new concept for location of potential field sources. J Appl Geophys 32:213–217. https://doi.org/10.1016/0926-9851(94)90022-1
  • 29. Milligan PR, Petkovic P, Drummond BJ (2003) Potential-field datasets for the Australian region: their significance in mapping basement architecture. In: Geological Society of Australia Special Publication 22 and Geological Society of America Special Paper, vol 372, pp 129–139. https://doi.org/10.1130/0-8137-2372-8.129
  • 30. Mohan MR, Singh SP, Santosh M, Siddiqui A, Balaram V (2012) TTG suite from the Bundelkhand Craton, Central India: geochemistry, petrogenesis and implications for Archean crustal evolution. J Asian Earth Sci 58:38–50. https://doi.org/10.1016/j.jseaes.2012.07.006
  • 31. Mondal MEA, Goswami JN, Deomurari MP, Sharma KK (2002) Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, Northern India: implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precambrian Res 117:85–100. https://doi.org/10.1016/S0301-9268(02)00078-5
  • 32. Mushayandebvu MF, Lesur V, Reid AB, Fairhead JD (2004) Grid Euler deconvolution with constraints for 2D structures. Geophysics 69(2):489–496. https://doi.org/10.1190/1.1707069
  • 33. Nabighian MN (1972) The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics 37(3):507–517. https://doi.org/10.1190/1.1440276
  • 34. Nabighian MN (1974) Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section. Geophysics 39(1):85–92. https://doi.org/10.1190/1.1440416
  • 35. Nabighian MN (1984) Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics 49(6):780–786. https://doi.org/10.1190/1.1441706
  • 36. Nabighian MN, Hansen RO (2001) Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform. Geophysics 66(6):1805–1810. https://doi.org/10.1190/1.1487122
  • 37. Oruc B, Selim HH (2011) Interpretation of magnetic data in the Sinop area of Mid Black Sea, Turkey, using tilt derivative, Euler deconvolution, and discrete wavelet transform. J Appl Geophys 74:194–204. https://doi.org/10.1016/j.jappgeo.2011.05.007
  • 38. Pati JK, Patel SC, Pruseth KL, Malviya VP, Arima M, Raju S, Pati P, Prakash K (2007) Geology and geochemistry of giant quartz veins from the Bundelkhand Craton, Central India and their implications. J Earth Syst Sci 116:497. https://doi.org/10.1007/s12040-007-0046-y
  • 39. Pati JK, Reimold WU, Koeberl C, Pati P (2008) The Dhala structure, Bundelkhand Craton, Central India-Eroded remnant of a large Paleoproterozoic impact structure. Meteorit Planet Sci 43:1383–1398. https://doi.org/10.1111/j.1945-5100.2008.tb00704.x
  • 40. Phillipse JD (2000) Locating magnetic contacts: a comparison of the horizontal gradient, analytic signal, and local wavenumber methods. SEG Expanded Abstracts. https://doi.org/10.1190/1.1816078
  • 41. Pilkington M, Keating P (2010) Geologic applications of magnetic data and using enhancements for contact mapping. In: EGM 2010 international workshop, Capri, Italy, April 11–14, 2010
  • 42. Pilkington M, Abdoh A, Cowan DR (1995) Pre-Mesozoic structure of the Inner Moray Firth Basin: constraints from gravity and magnetic data. First Break 13(7):291–300. https://doi.org/10.3997/1365-2397.1995015
  • 43. Reid A (2007) Semi-automated methods of potential field interpretation—innovations, and recent and future developments. In: EGM 2007 international workshop. Capri, Italy, April 15–18, 2007
  • 44. Reid AB, Thurston JB (2014) The structural index in gravity and magnetic interpretation: errors, uses, and abuses. Geophysics 79(4):J61–J66. https://doi.org/10.1190/GEO2013-0235.1
  • 45. Reid AB, Allsop JM, Granser H, Millet AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91
  • 46. Reid A B, Fitzgerald D, and Mcinerny P (2003) Euler deconvolution of gravity data: 73rd 488 Annual International Meeting; SEG, Expanded Abstracts, pp 580–583
  • 47. Reid AB, Ebbing JO, Susan SJ (2014) Avoidable Euler errors—the use and abuse of Euler deconvolution applied to potential fields. Geophys Prospect 62(5):1162–1168. https://doi.org/10.1111/1365-2478.12119
  • 48. Saha L, Frei D, Gerdes A, Pati JK, Sarkar S, Patole V, Bhandari A, Nasipuri P (2016) Crustal geodynamics from the Archaean Bundelkhand Craton, India: constraints from zircon U-Pb–Hf isotope studies. Geol Mag 153:179–192. https://doi.org/10.1017/S0016756815000692
  • 49. Saibi H, Nishijima J, Ehara S, Essam A (2006) Integrated gradient interpretation techniques for 2D and 3D gravity data interpretation. Earth Planet Sp 58:815–821. https://doi.org/10.1186/BF03351986
  • 50. Salem A, Williams S, Fairhead JD, Ravat D, Smith R (2007) Tilt-depth method; A simple depth estimation method using first-order magnetic derivatives. SEG the Leading Edge 26/12:1502–1505
  • 51. Salem A, Williams S, Samson E, Fairhead D, Ravat D, Blakely RJ (2010) Sedimentary basins reconnaissance using the magnetic tilt-depth method. Explor Geophys 41:198–209
  • 52. Salem A, Williams S, Fairhead JD, Smith R, Ravat DJ (2008) Interpretation of magnetic data using tilt-angle derivatives. Geophysics 73:L1–L10. https://doi.org/10.1190/1.2799992
  • 53. Sarkar SN, Ghosh DK, Lambert RJS (1985) Rubidium–strontium lead isotopic studies of the soda granites from Mosabani, Singhbhum Copper Belt, India. Indian J Earth Sci 13:101–116
  • 54. Shankar R (1993) Structural and geomorphological evolution of “SONATA” Rift zone in central India in response to Himalayaan uplift. J Palaeontol Soc India 38:13–30
  • 55. Silva JBC, Barbosa VCF (2003) 3D Euler deconvolution: theoretical basis for automatically selecting good solutions. Geophysics 68(6):1962–1968. https://doi.org/10.1190/1.1635050
  • 56. Singh B, Ranjith PG, Chandrasekharam D, Viete D, Singh HK, Lashin A, Al Arif N (2015) Thermo-mechanical properties of Bundelkhand granite near Jhansi, India. Geomech Geophys Geo-Energy Geo-Resour 1:35–53. https://doi.org/10.1007/s40948-015-0005-z
  • 57. Stavrev PY (1997) Euler deconvolution using differential similarity transformations of gravity and magnetic anomalies. Geophys Prospect 45(2):207–246. https://doi.org/10.1046/j.1365-2478.1997.00331.x
  • 58. Thompson DT (1982) EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47:31–37. https://doi.org/10.1190/1.1441278
  • 59. Thurston JB, Smith RS (1997) Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPITM method. Geophysics 62:807–813. https://doi.org/10.1190/1.1444190
  • 60. Verduzco B, Fairhead JD, Green CM, Mackenzie C (2004) New insights into magnetic derivatives. Lead Edge 22:116–119. https://doi.org/10.1190/1.1651454
  • 61. Wang W, Pan Y, Qiu Z (2009) A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data. Appl Geophys 6(3):226–233. https://doi.org/10.1007/s11770-009-0026-x
  • 62. Wijns C, Perez C, Kowalczyk P (2005) Theta Map: edge detection in magnetic data. Geophysics 70:L39–L43. https://doi.org/10.1190/1.2194525
  • 63. Yaghoobian A, Boustead GA, Dobush T M (1992) Object delineation using Euler’s homogeneity equation: location and depth determination of buried ferro-metallic bodies. In: Proc. Symp. on Application of Geophysics to Engineering and Environmental Problems 1993, San, USA, pp 613–632 Diego. https://doi.org/10.4133/1.2922042
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df4336fc-5b6d-4aa2-a1cb-7dc351c16cc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.