Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The understanding of how predefined computations can be attained by means of individual cellular automata rules, their spatial arrangements or their temporal sequences, is a key conceptual underpinning in the general notion of emergent computation. In this context, here we construct a solution to the MODn problem, which is the determination of whether the number of 1-bits in a cyclic binary string is perfectly divisible by the integer n > 1. Our solution is given for any lattice size N that is co-prime to n, and relies upon a set of one-dimensional rules, with maximum radius of n - 1, organised in a temporal sequence. Although the simpler cases of the problem for n = 2 and n = 3 have been addressed in the literature, this is the first account on the general case, for arbitrary n.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--17
Opis fizyczny
Bibliogr. 7 poz., rys., tab.
Twórcy
autor
- Pós-Graduação em Engenharia Elétrica e Computação, Universidade Presbiteriana Mackenzie, São Paulo, SP - Brazil
autor
- Pós-Graduação em Engenharia Elétrica e Computação, Universidade Presbiteriana Mackenzie, São Paulo, SP - Brazil
Bibliografia
- [1] Wolfram S. A New Kind of Science. Wolfram Media, Champaign; 2002.
- [2] Xu H, Lee KM, Chau HF. Modulo three problem with a cellular automaton solution. International Journal of Modern Physics C. 2003;14(03):249–256. doi:10.1142/S0129183103004450.
- [3] Lee KM, Xu H, Chau HF. Parity problem with a cellular automaton solution. Physical Review E. 2001;64(2):026702. doi:10.1103/PhysRevE.64.026702.
- [4] Martins CLM, de Oliveira PPB. Improvement of a result on sequencing elementary cellular automata rules for solving the parity problem. Electronic Notes in Theoretical Computer Science. 2009;252:103–119. doi:10.1016/j.entcs.2009.09.017.
- [5] Betel H, de Oliveira PPB, Flocchini P. Solving the parity problem in one-dimensional cellular automata. Natural Computing. 2013;12(3):323–337. doi:10.1007/s11047-013-9374-9.
- [6] Martins CLM, de Oliveira PPB. Evolving sequential combinations of elementary cellular automata rules. Lecture Notes in Computer Science. 2005;3630:461–470. doi:10.1007/11553090 47.
- [7] Martins CLM, de Oliveira PPB. Merging cellular automata rules to optimise a solution to the Modulo-n problem. Lecture Notes in Computer Science. 2015;9099:196–209. doi:10.1007/978-3-662-47221-7 15
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df39ce95-c505-4f56-b4b2-3498acb171f5