PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Foaming Agent Towards Metakaolin Based Alkali Activated Materials Properties and Cu2+ Adsorption

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of adsorbent synthesized by alkali activation of aluminosilicate precursor metakaolin with sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as well as the foaming agent was studied for copper ions adsorption from aqueous solution. This paper investigated the effect of adding hydrogen peroxide (H2O2) and aluminium powder as foaming agents to an alkali activated materials slurry. The experimental range included 0.50 wt%, 0.75 wt%, and 1.00 wt% hydrogen peroxide and 0.02 wt%, 0.04 wt%, and 0.06 wt% aluminium powder. A control sample without a foaming agent was also created for comparison. The specific surface area, water absorption, density, compressive strength and microstructure of metakaolin based alkali activated materials were evaluated. The adsorption capability of Cu2+ with addition of hydrogen peroxide and aluminium powder was then tested. Results indicate hydrogen peroxide addition had superior pore size distribution and homogeneous porosity than aluminium powder, implying improved copper ion elimination. Cu2+ adsorption capability reached 98% with 0.75 wt% hydrogen peroxide and 24.6076 m2/g surface area. The results demonstrating that low cost metakaolin-based AAMs are the most effective adsorbent for removing copper ions.
Twórcy
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
autor
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia
  • Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Johor, Malaysia
Bibliografia
  • [1] A. Gogoi, P. Mazumder, V. Kumar, G.G.T. Chaminda, A. Kyoungjin, M. Kumar, Groundwater for Sustainable Development Occurrence and fate of emerging contaminants in water environment: A review, Groundw. Sustain. Dev. 6, 169-180 (2018). DOI: https://doi.org/10.1016/j.gsd.2017.12.009
  • [2] Q. Su, Q. Ye, L. Deng, Y. He, X. Cui, Prepared self-growth supported copper catalyst by recovering Cu (II) from wastewater using geopolymer microspheres, J. Clean. Prod. 272, 122571 (2020). DOI: https://doi.org/10.1016/j.jclepro.2020.122571
  • [3] C. Sarkar, J.K. Basu, A.N. Samanta, Removal of Ni2+ ion from waste water by Geopolymeric Adsorbent derived from LD Slag, J. Water Process Eng. 17, 237-244 (2017). DOI: https://doi.org/10.1016/j.jwpe.2017.04.012
  • [4] P. Duan, C. Yan, W. Zhou, D. Ren, Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu(II) from wastewater, Ceram. Int. 42 (12), 13507-13518 (2016). DOI: https://doi.org/10.1016/j.ceramint.2016.05.143
  • [5] Z. Yu, W. Song, J. Li, Q. Li, Improved simultaneous adsorption of Cu(II) and Cr(VI) of organic modified metakaolin-based geopolymer, Arab. J. Chem. 13 (3), 4811-4823 (2020). DOI: https://doi.org/10.1016/j.arabjc.2020.01.001
  • [6] M. Ibrahim, W. Mastura Wan Ibrahim, M. Mustafa Al Bakri Abdullah, A. Syauqi Sauffi, AReview of Geopolymer Based Metakaolin Membrane as an Effective Adsorbent for Waste Water Treatment., IOP Conf. Ser. Mater. Sci. Eng. 864 (1) (2020). DOI: https://doi.org/10.1088/1757-899X/864/1/012128
  • [7] G. Bumanis, R.M. Novais, J. Carvalheiras, D. Bajare, J.A. Labrincha, Applied Clay Science Metals removal from aqueous solutions by tailored porous waste-based granulated alkali-activated materials, Appl. Clay Sci. 179, 105147 (2019). DOI: https://doi.org/10.1016/j.clay.2019.105147
  • [8] R.V. Silva, J. De Brito, C.J. Lynn, R.K. Dhir, Use of municipal solid waste incineration bottom ashes in alkali- activated materials, ceramics and granular applications: A review, Waste Manag. 68, 207-220 (2017). DOI: https://doi.org/10.1016/j.wasman.2017.06.043
  • [9] A. Maleki, Z. Hajizadeh, V. Sharifi, Z. Emdadi, A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions, J. Clean. Prod. 215, 1233-1245 (2019). DOI: https://doi.org/10.1016/j.jclepro.2019.01.084
  • [10] M. Malacas et al., The removal of copper (II) and lead (II) from aqueous solution using Fuller’s earth and Fuller’s earth-immobilized nanoscale zero valent iron (FE-NZVI) by adsorption, MATEC. Web. Conf. 268, 05006 (2019). DOI: https://doi.org/10.1051/matecconf/201926805006
  • [11] M.R. Awual, A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater, Chem. Eng. J. 266, 368-375 (2015). DOI: https://doi.org/10.1016/j.cej.2014.12.094
  • [12] S.A. Al-Saydeh, M.H. El-Naas, S.J. Zaidi, Copper removal from industrial wastewater: A comprehensive review, J. Ind. Eng. Chem. 56, 35-44 (2017). DOI: https://doi.org/10.1016/j.jiec.2017.07.026
  • [13] Haider Ali et al., A Step Forward Towards Heavy Metals in Selected Fruits and Their Effects on Various Body Organs, Sch. Int. J. Biochem. 03 (04), 95-103 (2020). DOI: https://doi.org/10.36348/sijb.2020.v03i04.004
  • [14] A.A. Siyal et al., AReview on Geopolymers as Emerging Materials for the Adsorption of Heavy Metals and Dyes, J. Environ. Manage. 224, 327-339 (2018). DOI: https://doi.org/10.1016/j.jenvman.2018.07.046
  • [15] A. Singhal, B.P. Gangwar, J.M. Gayathry, CTAB modified large surface area nanoporous geopolymer with high adsorption capacity for copper ion removal, Appl. Clay Sci. 150, 106-114 (2017). DOI: https://doi.org/10.1016/j.clay.2017.09.013
  • [16] S. Salehin, A.S. Aburizaiza, M.A. Barakat, Activated carbon from residual oil fly ash for heavy metals removal from aqueous solution,” Desalin. Water Treat. 57 (1), 278-287 (2016). DOI: https://doi.org/10.1080/19443994.2015.1006824
  • [17] A. Esmaeili, M. Mobini, H. Eslami, Removal of heavy metals from acid mine drainage by native natural clay minerals, batch and continuous studies, Appl. Water Sci. 9 (4), 1-6 (2019). DOI: https://doi.org/10.1007/s13201-019-0977
  • [18] M.B. Shakoor et al., A review of biochar-based sorbents for separation of heavy metals from water, Int. J. Phytoremediation 22 (2), 111-126 (2020). DOI: https://doi.org/10.1080/15226514.2019.1647405
  • [19] S.S. Obaid, D.K. Gaikwad, M.I. Sayyed, K. Al-rashdi, P.P. Pawar, Heavy metal ions removal from waste water bythe natural zeolites, Mater. Today Proc. 5 (9), 17930-17934 (2018). DOI: https://doi.org/10.1016/j.matpr.2018.06.122
  • [20] Q. Tang, Y. Ge, K. Wang, Y. He, X. Cui, Preparation and characterization of porous metakaolin-based inorganic polymer spheres as an adsorbent, JMADE 88, 1244-1249 (2015). DOI: https://doi.org/10.1016/j.matdes.2015.09.126
  • [21] İ. Kara, D. Yilmazer, S.T. Akar, Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc(II) and nickel(II) ions from aqueous solutions, Appl. Clay Sci. 139, 54-63 (2017). DOI: https://doi.org/10.1016/j.clay.2017.01.008
  • [22] B.H. Mo, H. Zhu, X.M. Cui, Y. He, S.Y. Gong, Effect of curing temperature on geopolymerization of metakaolin-based geopolymers, Appl. Clay Sci. 99, 144-148 (2014). DOI: https://doi.org/10.1016/j.clay.2014.06.024
  • [23] N.F. Shahedan, M.M.A.B. Abdullah, N. Mahmed, A. Kusbiantoro, S. Tammas-Williams, L.Y. Li, I.H. Aziz, P. Vizureanu, J.J. Wysłocki, K. Błoch, M. Nabiałek, Materials 14, 809 (2021). DOI: https://doi.org/10.3390/ma14040809
  • [24] B.W. Chong, R. Othman, R.P. Jaya, M.R.M. Hasan, A.V. Sandu, M. Nabiałek, B. Jeż, P. Pietrusiewicz, D. Kwiatkowski, P. Postawa, M.M.A.B. Abdullah, Materials 14 (8), 1866 (2021). DOI: https://doi.org/10.3390/ma14081866
  • [25] M.A. Faris, M.M.A.B. Abdullah, R. Muniandy, M.F. Abu Hashim, K. Błoch, B. Jeż, S. Garus, P. Palutkiewicz, N.A. Mohd Mortar, M.F. Ghazali, Materials 14, 1310 (2021). DOI: https://doi.org/10.3390/ma14051310
  • [26] N.H. Jamil, M.M.A.B. Abdullah, F. Che Pa, M. Hasmaliza, W.M.A. Ibrahim, I.H.A. Aziz, B. Jeż, M. Nabiałek, Magnetochemistry 7, 32 (2021). DOI: https://doi.org/10.3390/magnetochemistry7030032
  • [27] M.H. Yazid, M.A. Faris, M.M.A.B. Abdullah, M. Nabiałek, S.Z.A. Rahim, M.A.A.M. Salleh, M. Kheimi, A.V. Sandu, A. Rylski, B. Jeż, Materials 15 (4), 1496 (2022). DOI: https://doi.org/10.3390/ma15041496
  • [28] O.H. Li, L. Yun-Ming, H. Cheng-Yong, R. Bayuaji, M.M.A.B. Abdullah, F.K. Loong, T.A. Jin, N.H. Teng, M. Nabiałek, B. Jeż, N.Y. Sing, Magnetochemistry 7 (1), 9 (2021). DOI: https://doi.org/10.3390/magnetochemistry7010009
  • [29] Q. Tang, Y. Yuan Ge, K. Tuo Wang, Y. He, X. Min Cui, Preparation and characterization of porous metakaolin-based inorganic polymer spheres as an adsorbent, Mater. Des. 88, 1244-1249 (2015). DOI: https://doi.org/10.1016/j.matdes.2015.09.126
  • [30] C. Bai et al., High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment, J. Mater. Res. 32 (17), 3251-3259 (2017). DOI: https://doi.org/10.1557/jmr.2017.127
  • [31] T.H. Tan, K.H. Mo, T.C. Ling, S.H. Lai, Current development of geopolymer as alternative adsorbent for heavy metal removal, Environ. Technol. Innov. 18, 100684 (2020). DOI: https://doi.org/10.1016/j.eti.2020.100684
  • [32] M. Król, P. Rożek, The effect of calcination temperature on metakaolin structure for the synthesis of zeolites, Clay Miner. 53 (4), 657-663 (2018). DOI: https://doi.org/10.1180/clm.2018.49
  • [33] B.B. Kenne Diffo, A. Elimbi, M. Cyr, J. Dika Manga, H. Tchakoute Kouamo, Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers, J. Asian Ceram. Soc. 3 (1), 130-138 (2015). DOI: https://doi.org/10.1016/j.jascer.2014.12.003
  • [34] T.W. Cheng, M.L. Lee, M.S. Ko, T.H. Ueng, S.F. Yang, The heavy metal adsorption characteristics on metakaolin-based geopolymer, Appl. Clay Sci. 56, 90-96 (2012). DOI: https://doi.org/10.1016/j.clay.2011.11.027
  • [35] N. Ariffin, M.Mustafa, A. Bakri, R. Rozainy, Geopolymer as an Adsorbent of Heavy Metal: A Review, AIP Conference Proceedings. 1885 (1) (2017). DOI: https://doi.org/10.1063/1.5002224
  • [36] T.R. Barbosa, E.L. Foletto, G.L. Dotto, S.L. Jahn, Preparation of mesoporous geopolymer using metakaolin and rice husk ash as synthesis precursors and its use as potential adsorbent to remove organic dye from aqueous solutions, Ceram. Int. 44 (1), 416-423 (2018). DOI: https://doi.org/10.1016/j.ceramint.2017.09.193
  • [37] N.R. Rakhimova, R.Z. Rakhimov, Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials - A review, J. Mater. Res. Technol. 8 (1), 1522-1531 (2019). DOI: https://doi.org/10.1016/j.jmrt.2018.07.006
  • [38] A.S. Sauffi, W. Mastura, W. Ibrahim, M. Mustafa, A. Bakri, Phase Analysis of Different Liquid Ratio on Metakaolin/Dolomite Geopolymer, Arch. Met. Mater. 67, 247-250, (2022). DOI: https://doi.org/10.24425/amm.2022.137497 Arch
  • [39] P. Keawpapasson et al., Metakaolin-Based Porous Geopolymer with Aluminium Powder, Key. Eng. Mater. 608, 132-138 (2014). DOI: https://doi.org/10.4028/www.scientific.net/KEM.608.132
  • [40] Z. Emdadi et al., Development of green geopolymer using agricultural and industrialwaste materials with high water absorbency, Appl. Sci. 7 (5), (2017). DOI: https://doi.org/10.3390/app7050514
  • [41] W.M.W. Ibrahim, K. Hussin, M.M.A.B. Abdullah, A.A. Kadir, Geopolymer lightweight bricks manufactured from fly ash and foaming agent, AIP Conf. Proc. 1835 (2017). DOI: https://doi.org.10.1063/1.4981870
  • [42] A. Hajimohammadi, T. Ngo, P. Mendis, J. Sanjayan, Regulating the chemical foaming reaction to control the porosity of geopolymer foams, Mater. Des. 120, 255-265 (2017). DOI: https://doi.org/10.1016/j.matdes.2017.02.026
  • [43] G. Masi, W.D.A. Rickard, L. Vickers, M. Chiara, A. Van Riessen, A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int. 40 (9), 13891-13902 (2014). DOI: https://doi.org/10.1016/j.ceramint.2014.05.108
  • [44] M. Łach et al., Determination of the influence of hydraulic additives on the foaming process and stability of the produced geopolymer foams, Materials (Basel). 14 (17) (2021). DOI: https://doi.org.10.3390/ma14175090
  • [45] K.K. Suresh, A.A. Siyal, Z. Man, Effect of pore forming agents on geopolymer porosity and mechanical properties, AIP Conf. Proc. 020066, (2018). DOI: https://doi.org/10.1063/1.5055468
  • [46] M.M. Al Bakri Abdullah, K. Hussin, M. Bnhussain, K.N. Ismail, Z. Yahya, R.A. Razak, Fly ash-based geopolymer lightweight concrete using foaming agent, Int. J. Mol. Sci. 13 (6), 7186-7198, (2012). DOI: https://doi.org/10.3390/ijms13067186
  • [47] P. Risdanareni, A. Hilmi, P.B. Susanto, The effect of foaming agent doses on lightweight geopolymer concrete metakaolin based, 1835, 020057 (2017). DOI: https://doi.org/10.1063/1.4983797
  • [48] J. Zhang, W. Zhang, Y. Zhang, Pore structure characteristics of activated carbon fibers derived from poplar bark liquefaction and their use for adsorption of cu(II), Bio Resources 10 (1), 566-574 (2015). DOI: https://doi.org/10.15376/biores.10.1.566-574
  • [49] R.T. Lermen et al., Evaluation of the properties of a foamed geopolymer developed with different types of metakaolin, Ceramica 67 (382), 164-178 (2021). DOI: https://doi.org/10.1590/0366-69132021673823004
  • [50] R.M. Novais, R.C. Pullar, J.A. Labrincha, Geopolymer foams: An overview of recent advancements, Progress in Materials Science 109 (2020). DOI: https://doi.org/10.1016/j.pmatsci.2019.100621
  • [51] Q. Tang, K. Wang, M. Yaseen, Z. Tong, X. Cui, Synthesis of highly efficient porous inorganic polymer microspheres for the adsorptive removal of Pb2+ from wastewater, J. Clean. Prod. 193, 351-362 (2018). DOI: https://doi.org/10.1016/j.jclepro.2018.05.094
  • [52] H.C. Wu, P. Sun, New building materials from fly ash-based lightweight inorganic polymer, Constr. Build. Mater. 21 (1), 211-217 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2005.06.052
  • [53] T. Lan, P. Li, F.U. Rehman, X. Li, W. Yang, S. Guo, Efficient adsorption of Cd2+ from aqueous solution using metakaolin geopolymers, Environmental Science and Pollution Research 26 (32), 33555-33567 (2019). DOI: https://doi.org/10.1007/s11356-019-06362-w
  • [54] K. Trivunac, L.M. Kljajevic, S. Nenadovic, Microstructural characterization and adsorption properties of alkali-activated materials based on metakaolin, Science of Sintering 48 (2), 209-220 (2016). DOI: https://doi.org/10.2298/SOS1602209T
  • [55] T. Luukkonen, M. Sarkkinen, K.K. Emppainen, J. Rämö, U. Lassi, Metakaolin geopolymer characterization and application for ammonium removal from model solutions and landfill leachate, Applied Clay Science 119, 266-276 (2016). DOI: https://doi.org/10.1016/j.clay.2015.10.027
  • [56] Z. Zhang, J.L. Provis, A. Reid, H. Wang, Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence, Cem. Concr. Res. 64, 30-41 (2014). DOI: https://doi.org/10.1016/j.cemconres.2014.06.004
  • [57] A. Raj, D. Sathyan, K.M. Mini, Physical and functional characteristics of foam concrete: A review, Constr. Build. Mater. 221, 787-799 (2019). DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.052
  • [58] T.H. Tan, K.H. Mo, T.-C. Ling, S.H. Lai, Current development of geopolymer as alternative adsorbent for heavy metal removal, Environ. Technol. Innov. 18, 100684 (2020). DOI: https://doi.org/10.1016/j.eti.2020.100684
  • [59] A. Hajimohammadi, T. Ngo, P. Mendis, T. Nguyen, A. KKashani, J.S.J. van Deventer, Pore characteristics in one-part mix geopolymers foamed by H2O2: The impact of mix design, Mater. Des. 130, 381-391 (2017). DOI: https://doi.org/10.1016/j.matdes.2017.05.084
  • [60] V. Ducman, L. Korat, Characterization of geopolymer fly-ash based foams obtained with the addition ofAl powder or H2O2 as foaming agents, Mater. Charact. 113, 207-213 (2016). DOI: https://doi.org/10.1016/j.matchar.2016.01.019
  • [61] N.S.D.M. Azhar, F.F. Zainal, M.M.A.B. Abdullah, Bonding and Phases Analysis of Geopolymer Materials, IOP Conf. Ser. Mater. Sci. Eng. 957 (1), 012052 (2020). DOI: https://doi.org/10.1088/1757-899X/957/1/012052
  • [62] M. Padmapriya, S.T. Ramesh, V.M. Biju, Synthesis of seawater based geopolymer: Characterization and adsorption capacity of methylene blue from wastewater, Mater. Today Proc. 51, 1770-1776 (2022). DOI: https://doi.org/10.1016/j.matpr.2021.03.030
  • [63] N. Ariffin, M.M.A.B. Abdullah, P. Postawa, S.Z.A. Rahim, M.R.R.M.A. Zainol, R.P. Jaya, A. Śliwa, M.F. Omar, J.J. Wysłocki, K. Błoch, M. Nabiałek, Effect of aluminium powder on kaolinbased geopolymer characteristic and removal of Cu2+, Materials14 (4), 1-19 (2021). DOI: https://doi.org/10.3390/ma14040814
  • [64] J. Zhang, B. Liu, S. Zhang, A review of glass ceramic foams prepared from solid wastes: Processing, heavy-metal solidification and volatilization, applications, In Science of the Total Environment 781 (2021). DOI: https://doi.org/10.1016/j.scitotenv.2021.146727
  • [65] W. Zhou, J. Niu, W. Xiao, L. Ou, Adsorption of bulk nanobubbles on the chemically surface-modified muscovite minerals, Ultrason. Sonochem. 5, 31-39 (2019). DOI: https://doi.org/10.1016/j.ultsonch.2018.10.021
  • [66] M.A. Salam, M.R. Abukhadra, M. Mostafa, Effective decontamination of As (V), Hg(II), and U(VI) toxic ions from water using novel muscovite/zeolite aluminosilicate composite: adsorption behavior and mechanism, Environ. Sci. Pollut. Res. 27 (12), 13247-13260 (2020). DOI: https://doi.org.10.1007/s11356-020-07945-8
  • [67] H. Wu et al., Comparative study of strontium adsorption on muscovite, biotite and phlogopite, J. Environ. Radioact. 225, 106446 (2020). DOI: https://doi.org/10.1016/j.jenvrad.2020.106446
  • [68] I. Luhar, S. Luhar, M.M.A.B. Abdullah, R.A. Razak, P. Vizureanu, A.V. Sandu, P.D. Matasaru, A state-of-the-art review on innovative geopolymer composites designed for water and wastewater treatment, In Materials 14 (23), 7456 (2021). DOI: https://doi.org/10.3390/ma14237456
  • [69] N. Ariffin, M.M.A.B. Abdullah, M.R.R. Mohd Arif Zainol, M.S. Baltatu, L. Jamaludin, Effect of Solid to Liquid Ratio on Heavy Metal Removal by Geopolymer-Based Adsorbent, IOP Conf. Ser. Mater. Sci. Eng. 374 (1), 0-6 (2018). DOI: https://doi.org/10.1088/1757-899X/374/1/012045
Uwagi
The author would like to acknowledge the support from the Fundamental Research Grant Scheme (FRGS) under a grant number of FRGS/1/2019/TK10/UNIMAP/02/21 from the Ministry of Education Malaysia.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df3584f9-cc0b-4ce7-ba2f-f1d27f10d59d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.