PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Residual fly ash from pyrometallurgical processes as a partial replacement for Portland cement in mortars: a study of structural evolution and determination of compressive strength

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mortar mixtures were prepared by partial replacement of Portland cement with 0%, 10%, and 15% of residual fly ash to determine the structural evolution and compressive strength at 3, 7, 14, and 28 days. Portlandite, calcite, ettringite, iron oxide, silicon oxide, and sillimanite were identified in the standard mortar, and, additionally, magnetite was identified in the mortar with 10% and 15% fly ash. X-ray diffraction peaks corresponding to portlandite and ettringite increased in intensity with increasing curing time as a result of the consolidation of mineral species. The SEM analysis revealed that the standard mortar contained mainly portlandite and ettringite at 28 days, while the samples with 10% and 15% fly ash contained particles of fly ash coated with portlandite and ettringite, particles with a smooth surface, and particles of fly ash with signs of attack on their surfaces. The sc increased when the age of the mortar and the substitution of Portland cement by fly ash was increased from 3 to 28 days and from 0 to 15%, respectively.
Wydawca
Rocznik
Strony
120--131
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo Km 4.5, Mineral de la Reforma 42184, Hidalgo, México
  • Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo Km 4.5, Mineral de la Reforma 42184, Hidalgo, México
  • Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo Km 4.5, Mineral de la Reforma 42184, Hidalgo, México
  • Metallurgy and Materials Department, ESIQIE-IPN, UPALM, Zacatenco 07738, Ciudad de México, México
  • Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo Km 4.5, Mineral de la Reforma 42184, Hidalgo, México
  • Metallurgy and Materials Department, ESIQIE-IPN, UPALM, Zacatenco 07738, Ciudad de México, México
  • Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo Km 4.5, Mineral de la Reforma 42184, Hidalgo, México
  • Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo Km 4.5, Mineral de la Reforma 42184, Hidalgo, México
  • Institute of Metallurgy, Autonomous University of San Luis Potosí, San Luis Potosí 78210, México
Bibliografia
  • [1] Imbabi M, Carrigan C, McKenna S. Trends and developments in green cement and concrete technology. Int J Sustain Built Environ. 2012;1(2):94–216. doi:10.1016/j.ijsbe.2013.05.001
  • [2] Albitar M, Ali MM, Visintin P, Drechsler M. Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete. Constr Build Mater. 2015;83:128–35. doi:10.1016/j.conbuildmat.2015.03.009
  • [3] Rahman MA, Sarker PK, Shaikh FUA, Saha AK. Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag, Constr Build Mater. 2017;140:194–202. doi:10.1016/j.conbuildmat.2017.02.023
  • [4] ASTM C618 – 03, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, (2003). https://global.ihs.com/doc_detail.cfm?document_name=ASTM%20C618&item_s_key=00014875
  • [5] Bendapudi SCK. Contribution of fly ash to the properties of mortar and concrete. Int J Earth Sci Eng. 2011;04(06 SPL):1017–23. https://www.researchgate.net/publication/255963880_Contribution_of_Fly_ash_to_the_properties_of_Mortar_and_Concrete
  • [6] Malvar LJ, Lenke LR. Efficiency of fly ash in mitigating alkali silica reaction based on chemical composition. ACI Mater J. 2006;103(5):319–26. http://worldcat.org/oclc/13846872
  • [7] Yang J, Zeng L, He, Su Y, Li Y, Tan H, et al. Improving durability of heat-cured high volume fly ash cement mortar by wet-grinding activation. Constr Build Mater. 2021;289:123157. doi:10.1016/j.conbuildmat.2021.123157
  • [8] Neville AM. 1995. Properties of concrete. Harlow, Essex: Addison Wesley Longman Limited. http://worldcat.org/isbn/0582230705
  • [9] Chindaprasirt P, Rukzon S. Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr Build Mater. 2008;22(8):1601–6. doi:10.1016/j.conbuildmat.2007.06.010
  • [10] Supit SW, Shaikh FU, Sarker PK. Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar. Constr Build Mater. 2014;51:278–86. doi: 10.1016/j.conbuildmat.2013.11.002
  • [11] Chindaprasirt P, Homwuttiwong S, Sirivivatnanon V. Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cem Concr Res. 2004;34(7):1087–92. doi:10.1016/j.cemconres.2003.11.021
  • [12] Cheerarot R, Jaturapitakkul C. A study of disposed fly ash from landfill to replace Portland cement. Waste Manag. 2004;24(7):701–9. doi:10.1016/j.wasman.2004.02.003
  • [13] Rukzon S, Chindaprasirt P. Strength and chloride resistance of blended Portland cement mortar containing palm oil fuel ash and fly ash. Int J Min Met Mater. 2009;16(4):475–81. doi: 10.1016/S1674-4799(09)60083-2
  • [14] Fu X, Wang Z, Tao W, Yang C, Hou W, Dong Y, Wu X. Studies on blended cement with a large amount of fly ash. Cem Concr Res. 2002;32(7):1153–9. doi:10.1016/S0008-8846(02)00757-3
  • [15] Elahi A. Properties of high performance concrete with supplementary cementitious materials. Doctoral dissertation. Taxila. Department of Civil Engineering, University of Engineering and Technology, Pakistan; 2009. http://prr.hec.gov.pk/jspui/bitstream/123456789/1054/1/713S.pdf
  • [16] Oner A, Akyuz S, Yildiz R. An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem Concr Res. 2005;35(6):1165–71. doi:10.1016/j.cemconres.2004.09.031
  • [17] Mexican Standard. NMX-C-152-ONNCCE-2015 Industria de la Construcción-Cementantes hidráulicos a determinación de la densidad.
  • [18] Mexican Standard. NMX-C-049-ONNCCE-2015 Industria de la Construcción – Cementantes Hidráulicos – Método de Ensayo para la Determinación de la Finura de Cementantes Hidráulicos Mediante la Malla 0,045 Mm (No. 325).
  • [19] Mexican Standard. NMX-C-061-ONNCCE-2015 Industria de la Construcción – Cementos Hidráulicos – Determinación de la Resistencia a la Compresión de Cementantes Hidráulicos.
  • [20] Mexican Standard. NMX-C-056-ONNCCE-2019 Industria de la Construcción – Cementantes Hidráulicos – Determinación de la Finura de los Cementantes Hidráulicos
  • [21] Moghaddam F, Sirivivatnanon V, Vessalas K. The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes. Case Stud Constr Mater. 2019;10:e00218. doi:10.1016/j.cscm.2019.e0021
  • [22] Mexican Standard. (2017). NMX-C-414-ONNCCE-2017. Industria de la Construcción-Cementantes Hidráulicos-Especificaciones y Métodos de Ensayo. https://dof.gob.mx/nota_detalle.php?codigo=5510053&fecha=04/01/2018#gsc.tab=0
  • [23] Mexican Standard. (2014). NMX-C-486-ONNCCE-2014, Industria de la construcción – Mampostería – Mortero para uso estructural – Especificaciones y métodos de ensayo. https://www.dof.gob.mx/nota_detalle.php?codigo=5367564&fecha=07/11/2014#gsc.tab=0
  • [24] Echlin P. Handbook of sample preparation for scanning electron microscopy and X-ray microanalysis. Secaucus, New Jersey; Springer Science & Business Media; 2011. https://link.springer.com/book/10.1007/978-0-387-85731-2
  • [25] Miguel PC, Jiménez JG, Giménez LE. Hormigón autocompactante expansivo. Diseño y eficacia en sistemas de refuerzo por confinamiento de pilares cilíndricos, (2012). https://dialnet.unirioja.es/servlet/tesis?codigo=52893
  • [26] Gomes S, François M. Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and 29Si MAS NMR. Cem Concr Res. 2000;30(2):175–81. doi:10.1016/S0008-8846(99)00226-4
  • [27] Kutchko BG, Kim AG. Fly ash characterization by SEM–EDS. Fuel. 2006;85(17–18):2537–44. doi:10.1016/j.fuel.2006.05.016
  • [28] Cui Y, Wang L, Liu J, Liu R, Pang B. Impact of particle size of fly ash on the early compressive strength of concrete: experimental investigation and modelling. Constr Build Mater. 2022;323:126444. doi:10.1016/j.conbuildmat.2022.126444
  • [29] Kiattikomol K, Jaturapitakkul C, Songpiriyakij S, Chutubtim S. A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials. Cem Concr Compos. 2001;23(4–5):335–43. doi:10.1016/S0958-9465(01)00016-6
  • [30] Young G, Yang M. Preparation and characterization of Portland cement clinker from iron ore tailings. Constr Build Mater. 2019;197:152–6. doi:10.1016/j.conbuildmat.2018.11.236
  • [31] Giraldo MA, Tobón JI. Evolución mineralógica del cemento portland durante el proceso de hidratación. Dyna. 2006;73(148):69–81. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532006000100007
  • [32] Carrete JC. La “portlandita”-hidróxido de calcio-y la “tobermorita”-silicatos de calcio hidratados-de la pasta de cemento: tratamiento estequiométrico de sus compartimentos. Cemento Hormigón. 2001;824:526–42. https://dialnet.unirioja.es/servlet/articulo?codigo=5528283
  • [33] Abo-El-Eein SA, Salem T, Hekal EE. Thermal and physicochemical studies on ettringite. il Cemento—Roma. 1988;85(1):47–85. https://scholar.google.com/citations?user=HEaSrGkAAAAJ&hl=th
  • [34] Chindaprasirt P, Jaturapitakkul C, Sinsiri T. Effect of fly ash fineness on microstructure of blended cement paste. Constr Build Mater. 2007;21(7):1534–41. doi:10.1016/j.conbuildmat.2005.12.024
  • [35] Bijen J, Selst I. CUR Report 144. Fly ash as addition to concrete. Research carried out by INTRON. Institute for Material and Environmental Research BV, AA Balkema, Rotterdam. ISBN-10:905410127X.
  • [36] Berry EE, Hemmings RT, Cornelius BJ. Mechanisms of hydration reactions in high volume fly ash pastes and mortars. Cem Concr Compos. 1990;12(4):253–61. doi: 10.1016/0958-9465(90)90004-H
  • [37] Berry EE, Hemmings R, Zhang MH, Cornelius BJ, Golden DM. Hydration in high-volume fly ash concrete binders. Mater J. 1994;91(4):382–9. doi:10.4067/S0718-50732010000300006
  • [38] Xu A, Sarkar SL. Microstructural development in high-volume fly-ash cement system. J Mater Civil Eng. 1994;6(1):117–36. http://worldcat.org/issn/08991561
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df34e3ba-ed6d-48ea-a409-1cf3bccd6beb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.