Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present a systematic study of Riesz measures and their natural exponential families of Wishart laws on a homogeneous cone. We compute explicitly the inverse of the mean map and the variance function of a Wishart exponential family.
Czasopismo
Rocznik
Tom
Strony
337--360
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Laboratoire de Mathématiques LAREMA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
autor
- Graduate School of Mathematics, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
autor
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
- [1] S. A. Andersson and T. Klein, On Riesz and Wishart distributions associated with decomposable undirected graphs, J. Multivariate Anal. 101 (4) (2010), pp. 789-810.
- [2] S. A. Andersson and G. G. Wojnar, Wishart distributions on homogeneous cones, J. Theoret. Probab. 17 (4) (2004), pp. 781-818.
- [3] O. Barndorff-Nielsen, Information and Exponential Families in Statistical Theory, Wiley, Chichester 2014.
- [4] I. Boutouria, Characterization of the Wishart distributions on homogeneous cones, C. R. Math. Acad. Sci. Paris 341 (1) (2005), pp. 43-48.
- [5] I. Boutouria and A. Hassairi, Riesz exponential families on homogeneous cones, arXiv:0906.1892v1 (2009).
- [6] P. Diaconis and D. Ylvisaker, Conjugate priors for exponential families, Ann. Statist. 7 (2) (1979), pp. 269-281.
- [7] J. Faraut and A. Korányi, Analysis on Symmetric Cones, The Clarendon Press, Oxford University Press, New York 1994.
- [8] S. G. Gindikin, Invariant generalized functions in homogeneous domains, Funktsional. Anal. i Prilozhen. 9 (1) (1975), pp. 56-58.
- [9] P. Graczyk and H. Ishi, Riesz measures and Wishart laws associated to quadratic maps, J. Math. Soc. Japan 66 (1) (2014), pp. 317-348.
- [10] P. Graczyk, H. Ishi, and B. Kołodziejek, Wishart laws and variance function on homogeneous cones, arXiv:1802.02352 (2018).
- [11] P. Graczyk, H. Ishi, and S. Mamane, Wishart exponential families on cones related to tridiagonal matrices, Ann. Inst. Statist. Math. 71 (2) (2019), pp. 439-471.
- [12] A. Hassairi and S. Lajmi, Riesz exponential families on symmetric cones, J. Theoret. Probab. 14 (4) (2001), pp. 927-948.
- [13] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with Sparsity: The Lasso and Generalizations, CRC Press, Boca Raton, FL, 2015.
- [14] H. Ishi, Positive Riesz distributions on homogeneous cones, J. Math. Soc. Japan 52 (1) (2000), pp. 161-186.
- [15] H. Ishi, On symplectic representations of normal j-algebras and their application to Xu’s realizations of Siegel domains, Differential Geom. Appl. 24 (6) (2006), pp. 588-612.
- [16] H. Ishi, On a class of homogeneous cones consisting of real symmetric matrices, Josai Math. Monogr. 6 (2013), pp. 71-80.
- [17] H. Ishi, Homogeneous cones and their applications to statistics, in: Modern Methods of Multivariate Statistics, P. Graczyk and A. Hassairi (Eds.), Hermann, Paris 2014, pp. 135-154.
- [18] H. Ishi, Matrix realization of homogeneous cones, Lecture Notes in Comput. Sci. Proceedings 9389 (2015), pp. 248-256.
- [19] H. Ishi, Explicit formula of Koszul-Vinberg characteristic functions for a wide class of regular convex cones, Entropy 18 (11) (2016), 383.
- [20] H. Ishi and B. Kołodziejek, Characterization of the Riesz exponential family on homogeneous cones, Colloq. Math. 158 (2019), pp. 45-57.
- [21] K. Khare and B. Rajaratnam, Wishart distributions for decomposable covariance graph models, Ann. Statist. 39 (1) (2011), pp. 514-555.
- [22] S. L. Lauritzen, Graphical Models, The Clarendon Press, Oxford University Press, New York 1996.
- [23] G. Letac, A characterization of the Wishart exponential families by an invariance property, J. Theoret. Probab. 2 (1) (1989), pp. 71-86.
- [24] G. Letac and H. Massam, Wishart distributions for decomposable graphs, Ann. Statist. 35 (3) (2007), pp. 1278-1323.
- [25] B. Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obshch. 12 (1963), pp. 303-358.
- [26] T. Yamasaki and T. Nomura, Realization of homogeneous cones through oriented graphs, Kyushu J. Math. 69 (1) (2015), pp. 11-48.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df2f775b-5c99-49a1-8064-aefcb1e30523