PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An improved structural model of the human iron exporter ferroportin. Insight into the role of pathogenic mutations in hereditary hemochromatosis type 4

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ferroportin (Fpn) is a membrane protein representing the major cellular iron exporter, essential for metal translocation from cells into plasma. Despite its pivotal role in human iron homeostasis, many questions on Fpn structure and biology remain unanswered. In this work, we present two novel and more reliable structural models of human Fpn (hFpn; inward-facing and outwardfacing conformations) obtained using as templates the recently solved crystal structures of a bacterial homologue of hFpn, Bdellovibrio bacteriovorus Fpn. In the absence of an experimentally solved structure of hFpn, the structural predictions described here allow to analyze the role of pathogenic mutations in the Fpn-linked hereditary hemochromatosis disease and represent a valuable alternative for reliable structure-based functional studies on this human iron exporter.
Rocznik
Strony
215--222
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
  • Department of Sciences, Roma Tre University, 00146 Rome, Italy
  • Department of Biochemical Sciences, Sapienza University of Roma, 00185 Rome, Italy
autor
  • Department of Sciences, Roma Tre University, 00146 Rome, Italy
autor
  • Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
  • Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy, Phone: +39-06-57336362, Fax: +39-06-57336321
Bibliografia
  • 1. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci 2016;41:274–86.
  • 2. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012;24:981–90.
  • 3. Drakesmith H, Nemeth E, Ganz T. Ironing out ferroportin. Cell Metab 2015;22:777–87.
  • 4. Montosi G, Donovan A, Totaro A, Garuti C, Pignatti E, Cassanelli S, et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest 2001;108:619–23.
  • 5. Pietrangelo A. The ferroportin disease: pathogenesis, diagnosis and treatment. Haematologica 2017;102:1972–84.
  • 6. Yan N. Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 2015;44:257–83.7.
  • 7. Tortosa V, Bonaccorsi di Patti MC, Musci G, Polticelli F. The human iron exporter ferroportin. Insight into the transport mechanism by molecular modeling. Bio-Algorithms Med-Systems 2016;12:1–7.
  • 8. Wallace DF, Harris JM, Subramaniam VN. Functional analysis and theoretical modeling of ferroportin reveals clustering of mutations according to phenotype. Am J Physiol Cell Physiol 2010;298:C75–84.
  • 9. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN. Structure and mechanism of the glycerol-3 phosphate transporter from Escherichia coli. Science 2003;301:616–20.
  • 10. Le Gac G, Ka C, Joubrel R, Gourlaouen I, Lehn P, Mornon JP, et al. Structure-function analysis of the human ferroportin iron exporter (SLC40A1): effect of hemochromatosis type 4 disease mutations and identification of critical residues. Hum Mutat 2013;34:1371–80.
  • 11. Yin Y, He X, Szewczyk P, Nguyen T, Chang G. Structure of the multidrug transporter EmrD from Escherichia coli. Science 2006;312:741–4.
  • 12. Bonaccorsi di Patti MC, Polticelli F, Cece G, Cutone A, Felici F, Persichini T, et al. A structural model of human ferroportin and of its iron binding site. FEBS J 2014;281:2851–60.
  • 13. Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H, et al. Structure of a fucose transporter in an outward-open conformation. Nature 2010;467:734–8.
  • 14. Taniguchi R, Kato HE, Deshpande CN, Wada M, Ito K, Ishitani R, et al. Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin. Nat Commun 2015;6:8545.
  • 15. Bonaccorsi di Patti MC, Polticelli F, Tortosa V, Furbetta PA, Musci G. A bacterial homologue of the human iron exporter ferroportin. FEBS Lett 2015;21:3829–35.
  • 16. Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci 2000;9:1753–73.
  • 17. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006;22:195–201.
  • 18. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods 2015;12:7–8.
  • 19. Wu S, Zhang Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 2007;35:3375–82.
  • 20. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402.
  • 21. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, et al. A new bioinformatics analysis tools framework at EMBLEBI. Nucleic Acids Res 2010;38:W695–9.
  • 22. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK – a program to check the stereochemical quality of protein structures. J App Cryst 1993;26:283–91.
  • 23. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 2014;42:W320–24.
  • 24. Jordan JB, Poppe L, Haniu M, Arvedson T, Syed R, Li V, et al. Hepcidin revisited, disulfide connectivity, dynamics, and structure. J Biol Chem 2009;284:24155–67.
  • 25. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z. ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 2014;30:1771–3.
  • 26. Pierce B, Weng Z. ZRANK: reranking protein docking predictions with an optimized energy function. Proteins 2007;67:1078–86.
  • 27. Mayr R, Janecke AR, Schranz M, Griffiths WJ, Vogel W, Pietrangelo A, et al. Ferroportin disease: a systematic meta-analysis of clinical and molecular findings. J Hepatol 2010;53:941–49.
  • 28. Jiang D, Zhao Y, Wang X, Fan J, Heng J, Liu X, et al. Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc Natl Acad Sci USA 2013;110:14664–9.
  • 29. Madej MG, Soro SN, Kaback HR. Apo-intermediate in the transport cycle of lactose permease (LacY). Proc Natl Acad Sci USA 2012;109:E2970–8.
  • 30. Jiang D, Zhao Y, Wang X, Fan J, Henga J, Liua X, et al. Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc Natl Acad Sci USA 2013;110:14664–69.
  • 31. Fernandes A, Preza GC, Phung Y, De Domenico I, Kaplan J, Ganz T, et al. The molecular basis of hepcidin-resistant hereditary hemochromatosis. Blood 2009;114:437–43.
  • 32. Preza GC, Ruchala P, Pinon R, Ramos E, Qiao B, Peralta MA, et al. Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. J Clin Investigation 2011;121:4880–8.
  • 33. Qiao B, Sugianto P, Fung E, del-Castillo-Rueda A, Moran-Jimenez MJ, Ganz T, et al. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Met 2012;15:918–24.
  • 34. Ross SL, Tran L, Winters A, Lee KJ, Plewa C, Foltz I, et al. Ferroportin internalization requires ferroportin lysines, not tyrosines or JAK-STAT. Cell Met 2012;15:905–17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df2f0f44-a63a-469a-ac03-b11c408c972d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.