PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Motion characteristics after ricochet: an experimental investigation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ricochet behaviour of the air–water trans-media vehicle (AWTMV) during water-entry crossing was experimentally investigated. Three types of small-scale AWTMV including cone, ogive, and flat nose were used in the test. The underwater trajectory, velocity, and inclination angle of projectiles during the ricochet process were obtained using a high-speed camera. The angle change of the AWTMV and the ratio of the residual velocity are introduced. Based on this result, the relationship between the ricochet responses and initial conditions was derived. The results of this study show that (1) a small incident angle and great velocity make the occurrence of ricochet behaviour easier, (2) the stability of the trajectory of projectiles with cone, ogive, and flat nose weakened in turn at the same initial conditions, (3) the angle change and the ratio of the residual velocity are linear functions of the incident angle and velocity.
Rocznik
Tom
Strony
4--10
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
  • Aeronautics Engineering College Air Force Engineering University Room 1, BaLing Road, Baqiao District, 710038, Xian City, China
autor
  • Aeronautics Engineering College Air Force Engineering University Room 1, BaLing Road, Baqiao District, 710038, Xian City, China
autor
  • Aeronautics Engineering College Air Force Engineering University Room 1, BaLing Road, Baqiao District, 710038, Xian City, China
autor
  • Aeronautics Engineering College Air Force Engineering University Room 1, BaLing Road, Baqiao District, 710038, Xian City, China
autor
  • Zhejiang Sci-Tech University, China
Bibliografia
  • 1. Yang J., Li Y., Feng J., et al. (2017): Simulation and experimental research on trans-media vehicle water-entry motion characteristics at low speed. PLOS ONE, 12(5), e0178461-.
  • 2. Ma Z., Feng J., Yang J. (2018): Research on vertical air–water trans-media control of hybrid unmanned aerial underwater vehicles based on adaptive sliding mode dynamical Surface control. International Journal of Advanced Robotic Systems, 15(2), 172988141877053-.
  • 3. Feng J., Li Y., Xu B., et al. (2016): Minimum thrust of a morphing unmanned submersible aerial vehicle in the water-to-air motion. Transactions of FAMENA, 40(4), 69-82.
  • 4. Xu B., Li Y., Feng J., et al. (2016): Research on the waterentry attitude of a submersible aircraft. SpringerPlus, 5(1), 1933-1937.
  • 5. Johnson W. (1998): Ricochet of non-spinning projectiles, mainly from water. Part I: Some historical contributions. International Journal of Impact Engineering, 21(1-2), 15-24.
  • 6. Johnson W. (1998): The ricochet of spinning and nonspinning spherical projectiles, mainly from water. Part II: an outline of theory and warlike applications. International Journal of Impact Engineering, 21(1-2), 25-34.
  • 7. Nishida M., Okumura M., Tanaka K. (2010): Effects of density ratio and diameter ratio on critical incident angles of projectiles impacting granular media. Granular Matter, 12(4), 337-344.
  • 8. Xu J., Lee C. K., Fan S. C., et al. (2014): A study on the ricochet of concrete debris on sand. International Journal of Impact Engineering, 65, 56-68.
  • 9. Vijayalakshmi M., Naik S. D. (2015): Skipping stone to projectile ricochet. International Review on Modelling and Simulations, 8(1), 104-110.
  • 10. Wim K., Ivo A., Erwin J. M. (2015): An empirical study on the relation between the critical angle for bullet ricochet and the properties of wood. Journal of Forensic Sciences, 60(3), 605-610.
  • 11. Xue J., Shen P., Wang W. (2016): Research on ricochet and its regularity of projectiles obliquely penetrating into concreto target. Chinese Journal of Explosives & Propellants, 18(5), 2754-2770.
  • 12. Jian D., Kehui W., Gang Z., et al. (2016): Critical ricochet performance of penetrator impacting concrete targets. Explosion and Shock Waves, 36(6), 797-802.
  • 13. Jian D., Kehui W., Gang Z., et al. (2016): Evaluation method for critical ricochet of projectile obliquely penetrating hard target. Acta Armamentarii, 37(8), 1395-1400.
  • 14. Li Y., Feng J., Hu J., et al. (2016): Research on entry water ricochet progress of a vehicle at small angle. Acta Armamentarii, 37(10), 1860-1871.
  • 15. Chen G. M., Feng J. F., Hu J. H., et al. (2017): The influence of initial conditions of water-entry on ricochet phenomenon. Fluid Dynamics Research, 49(4), 045505.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df2dfc55-9cb4-4147-a61e-df7fe4626db6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.