
B. AdAmczyk, Ł. konieczny, R. BuRdzik

3Volume 7 • Issue 2 • May 2014

TelematicsTelematics
Transport SystemTransport System

Archives of Volume 7

Issue 2

May 2014

Concept of a system for building
shared expert knowledge base of

vehicle repairs

B. AdAMCzyKa, Ł. KoniECznya, R. BuRdziKa

aSILESIAN UNIVERSITy OF TECHNOLOGy, Gliwice, Poland
EMAIL: blazej.adamczyk@polsl.pl

ABStRACt
The paper focuses on technical aspects of creating a centralized expert knowledge base of vehicle repairs which is
shared among its contributors. The proposed system is storing unstructured data gathered over the network from
different sources such as workshops and authorized resellers. The novelty of the proposed system is to use a semantic
web data store in form of OWL (Web Ontology Language) ontology in order to classify and explore the gathered
data to significantly improve the process of resolution of challenging vehicle repair problems. Similar problems can
be identified by using appropriate pattern recognition techniques and algorithms utilizing the Resource Description
Framework (RDF) and its query language - SPARQL Protocol and RDF Query Language (SPARQL).

KEYWORDS: expert knowledge base, vehicle repairs, RDF, SPARQL

1 Introduction
Automotive technology is strongly expanding every year making

vehicle diagnosis and repair process more complicated. Every car
make sells several different vehicle models. Further, each model
has several different variants which contain different components.
The combination of the above can cause more complex and rare
problems which may be very hard to identify and resolve.

In this paper we propose a system which gathers the
information about car repairs from distributed computer systems
over the Internet. The final goal is to gather data from different
workshops and resellers around Poland. At the moment we have
created a working proof of concept which is based on data from
one exemplary company. In the proposed system we introduced
a method of gathering data from the software which is already
being used in the companies without affecting the user process
of handling new orders. We also present the backend technology
which allows to store unstructured data. Finally, we will discuss the
pattern recognition algorithm which allowed to search through
the data and correctly detect similarities. At the end we show some

exemplary results of a working proof of concept, we present our
plan for the future work and we draw the conclusions.

1.1 The knowledge base of car repairs

This paper aims to present a solution for an existing problem
in the automotive industry – solving uncommon vehicle problems.
Authors have verified the problem really exists by reviewing
several car repair experts. There are few online knowledge base
services existing in the Internet (e.g. Bosch Trouble Ticket
System [1] or the International Automotive Technicians Network
Knowledge Base [2]), however all of them require the additional
step of filling the database with the information about the issues
and their solutions. What is more, the existing systems require to
additionally do a manual search for a solution of a challenging
problem. This results in very poor growth of the knowledge base
and strongly limits its usefulness.

1.2 The improvement idea

The novelty of the presented herein system is threefold:
•	autom

ConCept of a SyStem for Building Shared expert Knowledge BaSe of VehiCle repairS

© Copyright by pStt , all rights reserved. 20144

•	atic database contribution,
•	use of unstructured semantic data store instead of traditional

relational databases,
•	use of language stemmer and synonym dictionary to improve

search effectiveness.
Automatic expansion of the database without any additional user

actions can be achieved by integrating with the order management
software being used in the examined companies. In the next chapter
we will describe in details how an integration can be achieved
using the Graphical User Interface (GUI) system libraries without
affecting the existing order management process. Briefly speaking,
the system is being run in background and “hooks” into the order
management application without any side effects. This way, when a
user enters a new order description it can be automatically uploaded
to the knowledge base system. Additionally, the system can be also
searched for some already existing, similar issues in the database.
The already solved orders can be quietly displayed on screen
while the person is creating the new order. Thus, the user is being
informed when a strange problem has already been solved and can
contact the other database contributor (the author of the similar
order) and ask for help if needed. Additionally, in the future, the
software could also gather data about the performed services and
the used components thus giving tips what was the real cause of the
problem without contacting the source contributor.

To accumulate data from different order management
applications it is required to store them in a data store which does
not have any concrete structure. Thus, the second advantage of
the proposed system over the existing knowledge bases is the
used semantic network triple data store. This approach allows to
gather differently structured data in one place in form of Resource
Description Framework (RDF) [3] triples and additionally query
it with the use of SPARQL Protocol and RDF Query Language
(SPARQL) [4,5].

Finally in order to improve effectiveness of the pattern recognition
algorithms we have used a language stemmer and a synonym
dictionary. The order description provided by the contributing
company is being split into sentences and words. Further, each word
is converted to a base form and related with other words of the same
meaning. This way the information stored in different orders have
common elements and thus can be identified.

The details of used technologies and theory behind the data
store and pattern recognition is further described in chapter 3.

2. Data acquisition process
The majority of car workshops and services is currently using

some kind of order management software to maintain the history
of repairs. Such software is used every time when a new customer
orders a service. Usually some employee reviews the customer
regarding the order details. This way the description of an order is
prepared which is further printed and forwarded to the engineers.

In our system we propose a software (further referred to as
client) which is installed on the computer which runs the existing
order management application and is invisibly taking part of the
mentioned process. It gathers the entered data and sends it to a

centralized server for further processing. The server analyses
and expands the knowledge database with provided new order
information. Then it searches the existing data store for similar
issues and finally sends the results in a response.

In order to properly read the entered data, the client software
needs to be integrated with the existing order management
application. Such integration can be achieved on several levels
depending on the type of this software:

•	database level,
•	Application Programming Interface (API),
•	Graphical User Interface (GUI) integration through operating

system libraries.
The first two integration techniques strictly depend on the

technology used in the integrated application and thus would
require to build a dedicated client software for certain application
types. On the other hand, integration through database or API
brings the best performance and most detailed order information.
GUI integration, on contrary, is a more generic and dynamic
solution. The drawback of this technique is that depending on
application it may not be able to retrieve every entered piece of
information automatically.

In this paper we want to focus on the generic GUI integration
technique as it allows to create one software which will be able to
integrate with any type of application. Such integration is achieved
through operating system libraries which provide an interface to
query the displayed application windows and controls. The most
commonly used operating systems with graphical interface support
provide such libraries. For example, in Windows operating system
the integration can be achieved by using Windows API[6] system
calls, in Linux similar goal can be achieved by using X11[7] system
libraries. In this paper we focus on Windows platform as it seems
it is more popular among workshops and car services in Poland.

The Windows API exposes information about the displayed
user interface mostly through the User32.dll library. It can be used
to retrieve information about all displayed windows and controls.

The architecture of the user interface in Windows operating
system is as follows. The screen is divided onto a moveable and
resizable areas called windows. Each interactive program can
create several windows. They are used to perform the interaction
with user – usually by means of so called controls. Controls are
utilized to get some form of input from the user, for example a
TextBox control allows the user to enter some text. Of course,
by design, the controls created by one program are usually
handled only by this program itself. However, what is important,
the Windows API allows a program to access the windows and
controls of any other program. This way it is possible to create an
application which monitors another software and automatically
retrieves the entered information. For more information about
Windows API we would refer the reader to [8].

For the purpose of this paper we have integrated the
client software with an order management system used by the
cooperating car service. Figure 1 presents an order description
window of the integrated application.

B. AdAmczyk, Ł. konieczny, R. BuRdzik

5Volume 7 • Issue 2 • May 2014

Fig. 1. Order description window of the integrated system [personal
elaboration using the examined order management software
translated from Polish]

The client software uses Windows API scripting tool suite called
AutoIt [9] which makes the integration process easier. Using the
Windows API it is possible to detect the order description window
and retrieve the entered values of the interesting fields. In order
to make such integration client work it is necessary to configure
it properly. We have prepared a simple to use program which
allows the user to configure the client software. It asks the user to
select the order description window and then scans the window
for all existing controls. For each detected control the program
highlights it and asks for a name of the field (see Fig.2). It also
displays the contents of the control so that the user can determine
if this is a necessary knowledge database information. This way the
user can select only the controls which store information relevant
from the perspective of car repair knowledge base, for example
the car make and model, its year of production and so on. For
the examined order management application we have selected the
following fields which are important from the perspective of the
shared issue knowledge base:

•	Vehicle make (make)
•	Vehicle model (model)
•	Vehicle engine displacement (displacement)
•	Vehicle year of production (production_year)
•	Additional vehicle information (comments)
•	Order number (number)
•	Order year (year)
•	Order description (description)

Finally after this process the configuration program creates a
configuration file which then can be used by the client software. It
stores the important information which allow to identify correct
order management application window and all the important
controls to gather the entered data. An example configuration file
is presented in the following listing.

Fig. 2. The configuration process of client software [personal
elaboration using the examined order management software
translated from Polish]

[CLASS:Tzlecenieform]
production_year=”[CLASS:TLabeledEdit;
INSTANCE:9]”
model=”[CLASS:TLabeledEdit; INSTANCE:10]”
make=”[CLASS:TLabeledEdit; INSTANCE:11]”
displacement=”[CLASS:TLabeledEdit;
INSTANCE:12]”
year=”[CLASS:TLabeledEdit; INSTANCE:14]”
number=”[CLASS:TLabeledEdit; INSTANCE:15]”
comments=”[CLASS:TMemo; INSTANCE:1]”
description=”[CLASS:TMemo; INSTANCE:3]”

Finally the client software can be executed. It runs as a
background process and monitors all existing windows looking
for the order description window. If the window is found it scans
all the configured controls creating a so called order fingerprint
which can be send to the server software to update the central
database. The order fingerprint is also used to identify similar
orders on the server side. This way the user can be informed if
similar issues have been noticed before and maybe can ask the
other contributors for help in case of more challenging problem.
An exemplary order fingerprint (for the example order presented
in Fig. 1 and 2) is presented in the following listing.
model=C220 CDI
make=MERCEDES BENZ
displacement=2151
production_year=1999
comments=92KW
year=2013
number=2212
description=DOESN’T START AT MORNING,
SMOKES ON BLACK

Obviously different order management applications can store
different information and there is no predefined fingerprint
structure. The server data store accepts input formed in any kind

ConCept of a SyStem for Building Shared expert Knowledge BaSe of VehiCle repairS

© Copyright by pStt , all rights reserved. 20146

of structure. This is realized using the server side technology
described in the next chapters. Some of the fields contain a semantic
information (not an atomic value but rather a longer piece of text)
like the description (description) in the above example. For such
fields the server side can apply additional language processing to
split (tokenize) and classify the words in order to match similar
orders more effectively. This process is described in detail in
chapter 2.3.

3. The centralized knowledge
database

In order to correctly process the data gathered from different
contributors we decided to use a semantic triple data store instead
of traditional relational database. Such approach allows to query
the unstructured information with use of SPARQL language and
allows for much greater flexibility.

3.1 Triple data store

A triple data store or so called triple store is a database which
stores all information in form of triples composed of a subject,
predicate and object elements. The metadata model is usually based
on one of Resource Description Framework (RDF) specifications
defined by the World Wide Web Consortium (W3C). A triple
defines a relation (in form of a predicate) between the subject and
the object. Almost every kind of information can be presented in
such form. Figure 3 presents a representation of the examined in
the previous chapter order fingerprint inside a triple store.

Fig. 3. Example order fingerprint triplestore representation [own study]

Subjects and objects are represented on the above figure
as rectangles. Blue rectangles represent literal elements. White
rectangles, on the other hand, stand for node elements. The
distinction between node and literal is quite important – a node
is an element which has a unique identifier inside the data store
(such identifier is most commonly represented in form of Uniform
Resource Identifier – URI) and the literal is identified by its value.
This means that all triples relating to a concrete value (for example
a number or a string value) refer to exactly the same element. This
also means that if a change in a literal value is required, all triples
relating to the previous value needs to be updated. Literals can
only be used as objects in triples (as leaves of the tree). Nodes can

be used in all three triple elements. Both literals and nodes can
appear in several triples connecting the data into a graph.

Predicates are presented on Figure 3 in form of edges. Usually
predicates are represented as verbs to make the triples similar
to a real life sentences or facts. In this paper however predicates
represent the name of some value provided in the configuration
phase and thus are in form of nouns.

Figure 3 presents only one order fingerprint. It is important to
realize that other orders are also linking to the same literal elements
what makes the orders interconnected with each other forming a
global graph of orders. Such global graph can be searched to find
similarities. This can be done using SPARQL query language. The
details of the pattern recognition SPARQL query are presented in
the next section.

3.2 SPARQL pattern recognition

Information stored in a triple store can be queried using the
SPARQL language. It allows the user to bind and select variables
matching certain criteria. In other words, it allows to retrieve
interesting data similarly to SQL language in traditional relational
database.

The language itself is defined as a W3C Recommendation[4]
and was extended to version 1.1 in [5]. The most important
functionalities provided by this language are the following:

•	Projection – allows to select subjects, predicates or objects in
form of bounded variables,

•	Filtering – projection of elements which satisfy given criteria,
•	Grouping – grouping results by value allowing to perform

aggregate functions over a group like sum, average etc. (GROUP
BY keyword),

•	Ordering – ordering results by value (ORDER BY keyword),
•	Matching alternatives (UNION keyword),
•	Optional binding (OPTIONAL keyword),
•	Binding an expression result to projection results (BIND

keyword).

The above functionalities can be used to create a query which
finds similar order fingerprints in the database. When a server
receives an order fingerprint it adds it to the data store. Then,
the data store is queried to find all other similar orders. This is
achieved by executing the following SPARQL query.
SELECT ?name (SUM(?os) as ?order_similarity)
{
 ?z :is :order .
 ?z :name ?name .
 ?z2 :name “2212/2013” .
 {
 ?z (!:ignore)* ?mid .
 ?mid ?rel ?common .
 ?z2 (!:ignore)* ?mid2 .
 ?mid2 ?rel2 ?common .
 FILTER (isLiteral(?common) && ?common!=””)
 }
 UNION
 {

B. AdAmczyk, Ł. konieczny, R. BuRdzik

7Volume 7 • Issue 2 • May 2014

 ?z (!:ignore)* ?mid .
 ?mid :word ?word .
 ?z2 (!:ignore)* ?mid2 .
 ?mid2 :word ?word2 .
 ?common :means ?word .
 ?common :means ?word2 .
 BIND (:word as ?rel)
 BIND (:word as ?rel2)
 FILTER (?word!=?word2 && ?word!=”” &&
?word2!=””)
 }
 OPTIONAL { ?rel :weight ?w . }
 BIND (if (?rel!=?rel2,1,if(BOUND(?w),?w,1))
as ?os)
}
GROUP BY ?z ?name
ORDER BY DESC(?order_similarity)

The above query searches the data store for the orders
(bounded to ?z variable), which have the biggest number of literals
in common with the sample order (?z2 – e.g. with name equal
“2212/2013”). The whole logic is based on the SPARQL property
paths which allow to match zero or mare predicates between two
nodes (the “*” keyword). Additionally, for all word literals which
are not equal (the second part of UNION statement) it looks for
common synonyms. To correctly classify the similarities the query
additionally returns a measure of similarity: order_similarity. It
is a value calculated according to the number of similar order
properties and their weights. The results are ordered descending
according to this measure.

Such similarity analysis is a wide topic and is discussed
in different areas. Probably one of the biggest fields for pattern
recognition is the analysis of Gene Ontology. For example, in [10],
authors compare two metrics of similarity of genes. One similarity
metric is also based on a semantic data store of genes called Gene
Ontology.

The algorithm used in the presented system allows for result
tuning thanks to the weight parameters. Each predicate can have
a defined weight which specifies how strongly its value affects the
order_similarity. The weights defined for the tested data store were
as follows (triples declared in Turtle[11] format):
@prefix : <http://example.org#> .
:word :weight 5 .
:model :weight 5 .
:marka :weight 5 .

3.3 Language analysis process

Non-atomic order properties, like the description, need
additional processing in order to allow for the pattern recognition
algorithm to work effectively. This is achieved by splitting the text
into sentences and further into single words. Because the words
are in different inflection forms, we have used a Polish language
stemmer to inflect the words to the base form. The software used
for the stemming process was an open source java library called

Morfologik. This way the similarity detection algorithm can work
much more effectively.

Additionally, we have extended the data store with a synonym
dictionary. This allows to match the orders not only by similar
words in the description, but also by synonyms. Synonyms are
represented in the data store as nodes which are related using the
means predicate with all the literals of the same meaning.

The abovementioned language processing increases the
effectiveness of the similarity detection algorithm by far. Probably
in the future the system could be additionally improved by
performing a more complex syntactic or even a basic semantic
analysis.

4. Results
To test the presented similarities detection algorithm we have

performed multiple searches of similar orders basing on some
randomly chosen orders from the cooperating company history.
Exemplary results are presented in Table 1.

Table 1. Exemplary order similarities matching algorithm results.
(S – order_similarity). Three different searches.

Name S Make Model Year Disp. Other
Description

(translated to
English)

2357/2011 - ford mondeo 2005 20 96kw
SHAKES,

SMOKES AND
NO POWER

1174/2013 26 ford mondeo 2005 1998 85kw
POWER LOSS,

SHAKES,
SMOKES

2839/2013 26 ford mondeo 1998 20
DIAGNOSIS,
NO POWER,

SMOKES

2613/2011 25 ford mondeo 2004 18 80kw
NO POWER,
LOUD, HIGH

CONSUMPTION

4431/2009 25 ford mondeo 2003 1998 96kw
SMOKES ON
BLACK AND
NO POWER

936/2014 25 ford mondeo 2004 1998 85kw

NO POWER,
SHAKES,
UNEVEN

WORK

1409/2014 - skoda octawia 2002 19
LOUDER
WORK,

WHISTLES

854/2010 16 skoda octawia 2005 19 UNEVEN
WORK

2326/2008 12 skoda octawia 2002 19
WEAK, NO

POWER, MAX
120

1271/2010 11 skoda octavia 2005 19 77kw
LOUD ENGINE

WORK,
CLUTTER

ConCept of a SyStem for Building Shared expert Knowledge BaSe of VehiCle repairS

© Copyright by pStt , all rights reserved. 20148

3834/2010 11 chrysler voyager 2002 25
LOUD ENGINE

WORK,
REPAIR

3115/2013 11 citroen berlingo 2004 19 51kw LOUD ENGINE
WORK

1587/2014 - fiat doblo 2007 13td 55kw
DOESN’T

START AFTER
NIGHT

967/2013 20 fiat doblo 2003 1910 46kw

DOESN’T
START AT
MORNING

WHEN COLD

668/2012 16 fiat ducato 2007 25

ON CAR-
CARRIER,
DOESN’T

START

2048/2010 15 fiat doblo 2006 19 77kw TOWED NIE
PALI COS

250/2011 15 fiat doblo 2003 19 46kw HARDLY
STARTS

3179/2008 15 fiat doblo 2001

DOESN’T
WANT TO

START,
TOWED

The above and other gathered results were presented to several
experts and they all agreed that such knowledge base system would
be very useful in solving challenging problems. The diagnosis
process could be much less time consuming in certain cases.

5. Conclusion
In this paper we presented a concept of a system which allows

to build and analyse a shared knowledge base of vehicle repairs. We
have presented a novel approach of gathering and storing data which
may result in greater usability comparing to existing knowledge
base systems. We have also created a working proof of concept and
presented some exemplary results of similarity detection.

Currently the system is being tested at the cooperating company
and the plans are to introduce it in other workshops and car services.
In the future, we are planning to add the functionality to additionally
analyse the order after repair so that the system could suggest possible

problem cause. This might be possible by analysing the order details
after the repair. Usually order management systems store information
about the sold services and products. This data may lead to a successful
fix without contacting the source contributor.

Finally, it might be possible to improve the system effectiveness by
attaching a wireless OBD-II adapter during the order opening process.
This adapter can perform a quick diagnosis and send this data to the
client software to extend the collected order fingerprint by far.

Bibliography
1. BOSCH R.: Trouble Ticket System. Online https://www.

bosch-tts-new.de (accessed: 01.06.2014).
2. International Automotive Technicians Network: Fix Database.

Online http://www.iatn.net/automotive-fix-database (accessed:
01.06.2014).

3. CYGANIAK, R., WOOD, D., LANTHALER, M.: RDF 1.1
Concepts and Abstract Syntax. W3C Recommendation, 25
February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225/ (accessed: 01.06.2014).

4. PRUD’HOMMEAUX, E., SEABORNE, A.: SPARQL Query
Language for RDF. W3C Recommendation, 15 January 2008. URL:
http://www.w3.org/TR/rdf-sparql-query/ (accessed: 01.06.2014).

5. The W3C SPARQL Working Group: SPARQL 1.1 Overview.
W3C Recommendation, 21 March 2013. URL: http://www.
w3.org/TR/sparql11-overview/ (accessed: 01.06.2014).

6. Microsoft Corporation: Windows API. Online http://msdn.
microsoft.com/en-us/library/cc433218%28VS.85%29.aspx
(accessed: 01.06.2014).

7. SCHEIFLER, R.W.: RFC 1013 - X Window System Protocol,
Version 11. Network Working Group, June (1987)

8. CONGER, J.L.: Windows API Bible, The Definitive
Programmer’s Reference. Waite Groupe Press (1992)

9. AutoIt Consulting Ltd.: AutoIt. Online: http://www.
autoitscript.com/site/ (accessed: 01.06.2014).

10. KOzIELSKI, M., GRUCA, A.: Evaluation of Semantic Term
and Gene Similarity Measures. Pattern Recognition and
Machine Intelligence, Lecture Notes in Computer Science,
Volume 6744 (2011)

11. BECKETT, D., BERNERS-LEE, T.: Turtle – Terse RDF Triple
Language. W3C Recommendation, 28 March 2011. URL: http://
www.w3.org/TeamSubmission/turtle/ (accessed: 01.06.2014).

