PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic grouping maintenance optimization by considering the probabilistic remaining useful life prediction of multiple equipment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For multi-equipment maintenance of modern production equipment, the economic correlation and degradation uncertainty may lead to insufficient or excessive maintenance, increasing maintenance costs. This paper proposes a dynamic grouping maintenance method based on probabilistic remaining useful life (RUL) prediction for multiple equipment. Long short term memory (LSTM) is developed to predict the equipment probability RUL by the Variational Auto-Encoder (VAE) resampling. Then, the dynamic grouping maintenance model is constructed to minimize the maintenance cost rate under the known probabilistic RUL information. The gazelle optimization algorithm (GOA) is used to determine the optimal maintenance time for each equipment. To better verify the effectiveness of the proposed method, a numerical case with six wind turbines is introduced to analyse the performance of GOA. Moreover, the advantages of dynamic grouping maintenance is verified by comparing with independent maintenance, whose maintenance cost rate is reduced by 10.01%.
Rocznik
Strony
art. no. 187793
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Intelligence Manufacturing School of Mechanical Engineering, Xi’an University of Science and Technology, China
autor
  • Department of Intelligence Manufacturing School of Mechanical Engineering, Xi’an University of Science and Technology, China
  • Department of Intelligence Manufacturing School of Mechanical Engineering, Xi’an University of Science and Technology, China
autor
  • Department of Intelligence Manufacturing School of Mechanical Engineering, Xi’an University of Science and Technology, China
autor
  • Department of Intelligence Manufacturing School of Mechanical Engineering, Xi’an University of Science and Technology, China
Bibliografia
  • 1. Chen C, Lu N, Jiang B, et al. A risk-averse remaining useful life estimation for predictive maintenance. IEEE/CAA Journal of Automatica Sinica 2021; 8(2): 412-422,https://doi.org/10.1109/JAS.2021.1003835.
  • 2. Yang B, Si X, Pei H, et al. Joint Optimization Strategy of Condition-Based Maintenance and Spare Parts Ordering for Nonlinear Degraded Equipment under Imperfect Maintenance. Machines 2022; 10(11): 1041, https://doi.org/10.3390/machines10111041.
  • 3. Song M, Zhang Y, Yang F, Wang X, Guo G. Maintenance policy of degradation components based on the two-phase Wiener process. Eksploatacja i Niezawodność – Maintenance and Reliability 2023;25(4), https://doi.org/10.17531/ein/172537.
  • 4. Byon E, Ding Y. Season-dependent condition-based maintenance for a wind turbine using a partially observed Markov decision process. IEEE Transactions on Power Systems 2010; 25(4): 1823-1834, https://doi.org/10.1109/TPWRS.2010.2043269.
  • 5. Salem M B, Fouladirad M, Deloux E. Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps. Reliability Engineering & System Safety 2022; 223: 108417, https://doi.org/10.1016/j.ress.2022.108417.
  • 6. Fordal J M, Schjølberg P, Helgetun H, et al. Application of sensor data based predictive maintenance and artificial neural networks to enable Industry 4.0. Advances in Manufacturing 2023; 11(2): 248-263, https://doi.org/10.1007/s40436-022-00433-x.
  • 7. Wu C, Sun H, Lin S, Gao S. Remaining useful life prediction of bearings with different failure types based on multi-feature and deep convolution transfer learning. Eksploatacja i Niezawodność – Maintenance and Reliability 2021;23(4):685-694, https://doi.org/10.17531/ein.2021.4.11.
  • 8. Jafari S, Byun Y C. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries. Sensors 2022; 22(23): 9522, https://doi.org/10.3390/s22239522.
  • 9. Cui J, Cao L, Zhang T. A two-stage Gaussian process regression model for remaining useful prediction of bearings. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2023; 1748006X221141744, https://doi.org/10.1177/1748006X221141744.
  • 10. Wang T, Liu Z, Mrad N. A probabilistic framework for remaining useful life prediction of bearings. IEEE Transactions on Instrumentation and Measurement 2020; 70: 1-12, https://doi.org/10.17531/ein.2021.2.19.
  • 11. Nguyen K T P, Medjaher K, Gogu C. Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multi-component systems. Reliability Engineering & System Safety 2022; 222: 108383, https://doi.org/10.1016/j.ress.2022.108383.
  • 12. Zhang Q, Yang L, Duan J, Qin J, Zhou Y. Research on integrated scheduling of equipment predictive maintenance and production decision based on physical modeling approach. Eksploatacja i Niezawodność – Maintenance and Reliability 2023; https://doi.org/10.17531/ein/175409.
  • 13. Lee J, Mitici M, Blom HAP, et al. Analyzing Emerging Challenges for Data-Driven Predictive Aircraft Maintenance Using Agent-Based Modeling and Hazard Identification. Aerospace 2023; 10(2), 186, https://doi.org/10.3390/aerospace10020186.
  • 14. de Pater I, Reijns A, Mitici M. Alarm-based predictive maintenance scheduling for aircraft engines with imperfect Remaining Useful Life prognostics. Reliability Engineering & System Safety 2022; 221: 108341, https://doi.org/10.1016/j.ress.2022.108341.
  • 15. Nguyen K T P, Medjaher K. A new dynamic predictive maintenance framework using deep learning for failure prognostics. Reliability Engineering & System Safety 2019; 188: 251-262, https://doi.org/10.1016/j.ress.2019.03.018.
  • 16. Chen C, Wang C, Lu N, Jiang B, Xing Y. A data-driven predictive maintenance strategy based on accurate failure prognostics. Eksploatacja i Niezawodność – Maintenance and Reliability 2021;23(2):387-394, https://doi.org/10.17531/ein.2021.2.19.
  • 17. Kim S, Choi J H, Kim N H. Inspection schedule for prognostics with uncertainty management. Reliability Engineering & System Safety 2022; 222: 108391, https://doi.org/10.1016/j.ress.2022.108391.
  • 18. Lee J, Mitici M. Deep reinforcement learning for predictive aircraft maintenance using probabilistic remaining-useful-life prognostics. Reliability Engineering & System Safety 2023; 230: 108908, https://doi.org/10.1016/j.ress.2022.108908.
  • 19. Mitici M, de Pater I, Barros A, et al. Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines. Reliability Engineering & System Safety 2023; 234: 109199, https://doi.org/10.1016/j.ress.2023.109199.
  • 20. Vu H C, Do P, Barros A. A study on the impacts of maintenance duration on dynamic grouping modeling and optimization of multicomponent systems. IEEE Transactions on Reliability 2018; 67(3): 1377-1392, https://doi.org/10.1109/TR.2018.2827926.
  • 21. Iung B, Do P, Levrat E, et al. Opportunistic maintenance based on multi-dependent components of manufacturing system. CIRP Annals 2016; 65(1): 401-404, https://doi.org/10.1016/j.cirp.2016.04.063.
  • 22. Kowalski M, Izdebski M, Żak J, Gołda P, Manerowski J. Planning and management of aircraft maintenance using a genetic algorithm. Eksploatacja i Niezawodność – Maintenance and Reliability 2021;23(1):143-153, https://doi.org/10.17531/ein.2021.1.15.
  • 23. Malve S, Uzsoy R. A genetic algorithm for minimizing maximum lateness on parallel identical batch processing machines with dynamic job arrivals and incompatible job families. Computers & Operations Research 2007; 34(10): 3016-3028, https://doi.org/10.1016/j.cor.2005.11.011.
  • 24. Cao X, Li P, Duan Y. Joint decision-making model for production planning and maintenance of fully mechanized mining equipment. IEEE Access 2021; 9: 46960-46974, https://doi.org/10.1109/ACCESS.2021.3067696.
  • 25. Liu J, Zhan C, Liu Z, et al. Equipment Disassembly and Maintenance in an Uncertain Environment Based on a Peafowl Optimization Algorithm. Processes 2023; 11(8): 2462, https://doi.org/10.3390/pr11082462.
  • 26. Salih S K, Aljunid S A, Aljunid S M, et al. Adaptive filtering approach for denoising electrocardiogram signal using moving average filter. Journal of Medical Imaging and Health Informatics 2015; 5(5): 1065-1069, https://doi.org/10.1166/jmihi.2015.1495.
  • 27. Kingma D P, Welling M. Auto-encoding variational bayes. arXiv preprint arXiv 2013;1312.6114, https://doi.org/10.48550/arXiv.1312.6114.
  • 28. Zhang H, Zhang Q, Shao S, et al. Attention-based LSTM network for rotatory machine remaining useful life prediction. Ieee Access 2020; 8: 132188-132199, https://doi.org/10.1109/ACCESS.2020.3010066.
  • 29. Elsheikh A, Yacout S, Ouali M S. Bidirectional handshaking LSTM for remaining useful life prediction. Neurocomputing 2019; 323: 148-156, https://doi.org/10.1016/j.neucom.2018.09.076.
  • 30. Agushaka J O, Ezugwu A E, Abualigah L. Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer. Neural Computing and Applications 2023; 35(5): 4099-4131, https://doi.org/10.1007/s00521-022-07854-6.
  • 31. de Azevedo H D M, Araújo A M, Bouchonneau N. A review of wind turbine bearing condition monitoring: State of the art and challenges. Renewable and Sustainable Energy Reviews 2016; 56: 368-379, https://doi.org/10.1016/j.rser.2015.11.032.
  • 32. Chu F Y. Study on maintenance strategy of wind field based on Weibull distribution. North University of China MA thesis 2020; 10.27470/d.cnki.ghbgc.2020.000631,https://link.cnki.net/doi/10.27470/d.cnki.ghbgc.2020.000631.
  • 33. Murthy D N P, Xie M, Jiang R. Weibull models. John Wiley & Sons 2004;https://doi.org/10.1198/jasa.2005.s36.
  • 34. Ali J B, Chebel-Morello B, Saidi L, et al. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mechanical Systems and Signal Processing 2015; 56: 150-172, https://doi.org/10.1016/j.ymssp.2014.10.014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df2c5ed0-3381-44c9-b839-03b4697e7707
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.