PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of reducing common mode noise of conducted emission in a switching power converter considering parasitic effects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most automotive electronic components can cause electromagnetic interference, that can cause power electronic circuits to become unstable. As per electromagnetic compatibility (EMC) standards, these electronic circuits should meet the specifications which are not achieved under some conditions. In this paper, the conducted emissions (CEs) are generated due to the switching of a buck converter, which often occurs in automotive electronics. The noise source was found to be due to the presence of common mode currents which largely affects the performance of EMC. Two types of filtering techniques were analysed and designed, and the results were compared to find an effective filtering solution to mitigate the effects of CE due to a common mode noise for the frequency range from 150 kHz to 108 MHz according to the International Special Committee on Radio Interference (CISPR25) standard. The capacitive and parasitic impedance were calculated and then used in the simulation. Finally, the simulated and measured results are presented. The noise level can be minimized by as much as 50 dB, which is an efficient noise reduction value.
Rocznik
Strony
art. no. e147039
Opis fizyczny
Bibliogr. 35 poz., rys., wykr., tab., fot.
Twórcy
autor
  • Department of Electronics and Communication Engineering, SNS College of Technology, Coimbatore-641035, India
  • Department of Electronics and Communication Engineering, SNS College of Technology, Coimbatore-641035, India
Bibliografia
  • [1] Krismer, F. Modelling and optimization of bidirectional dual active bridge DC DC converter topologies. (ETH Zurich, 2010). https://doi.org/10.3929/ethz-a-006395373.
  • [2] Hartmann, M. Ultra-compact and ultra-efficient three-phase PWM rectifier systems for more electric aircraft. (ETH Zurich, 2011). https://doi.org/10.3929/ethz-a-006834022.
  • [3] Badstübner, U. Ultra-high performance telecom DC-DC converter. (ETH Zurich, 2012). https://doi.org/10.3929/ethz-a-009777673.
  • [4] Simanjorang, R., Liu, Y. & Pou, J. A 50-kW high-frequency and high-efficiency SiC voltage source inverter for more electric aircraft. IEEE Trans. Ind. Electron. 64, 9124-9134 (2017). https://doi.org/10.1109/TIE.2017.2696490.
  • [5] Paul, C. R. & Hardin, K. B. Diagnosis and reduction of conducted noise emissions. IEEE Trans. Electromagn. Compat. 30, 553-560 (1988). https://doi.org/10.1109/15.8769.
  • [6] Wood, R. A. & Salem, T. E. Evaluation of a 1200-V, 800-A all SiC dual module. IEEE Trans. Power Electron. 26, 2504-2511 (2011). https://doi.org/10.1109/TPEL.2011.2108670.
  • [7] Bishnoi, H., Baisden, A. C., Mattavelli, P. & Boroyevich, D. Analysis of EMI terminal modeling of switched power converter. IEEE Trans. Power Electron. 27, 3924-3933 (2012). https://doi.org/10.1109/TPEL.2012.2190100.
  • [8] Fu, D., Wang, S., Kong, P., Lee, F. C. & Huang, D. Novel techniques to suppress the common-mode EMI noise caused by transformer parasitic capacitances in DC-DC converters. IEEE Trans. Ind. Electron. 60, 4968-4977 (2013). https://doi.org/10.1109/TIE.2012.2224071.
  • [9] Pahlevaninezhad, M., Hamza, D. & Jain, P. K. An improved layout strategy for common-mode EMI suppression applicable to high-frequency planar transformers in high-power DC/DC converters used for electric vehicles. IEEE Trans. Power Electron. 29, 1211-1228 (2014). https://doi.org/10.1109/TPEL.2013.2260176.
  • [10] Subramanian, A. & Govindarajan, U. Analysis and mitigation of conducted EMI in current mode controlled DC-DC converters. IET Power Electron. 4, 667-675 (2019). https://doi.org/10.1049/iet-pel.2018.5322.
  • [11] Abinaya, A. B. & Magdaline, S. A. Design & Analysis Of Line Impedance Stabilization Network Using RLC Components for ITE. in 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) 1-5 (IEEE, 2017). https://doi.org/10.1109/ICIIECS.2017.8275974.
  • [12] Laour, M. & Tahmi, R. Effective filtering solution with low cost small size for common-mode reduction in dc-dc converters. Electron. Lett. 52, 388-390 (2016). https://doi.org/10.1049/el.2015.3296.
  • [13] Grobler, I. & Gitau, M. N. Conducted EMC Modeling For Accreditation in DC-DC Converters. in IEEE Industrial Electronics Society (IECON) 002329-002335 (IEEE, 2015). https://doi.org/10.1109/IECON.2015.7392450.
  • [14] Chu, Y. & Wang, S. A generalized common-mode current cancelation approach for power converters. IEEE Trans. Ind. Electron. 62, 4130-4140 (2015). https://doi.org/10.1109/TIE.2014.2387335.
  • [15] Xie, L., Ruan, X. & Ye, Z. Reducing common mode noise in phase-shifted full-bridge converter. IEEE Trans. Ind. Electron. 65, 7866-7877 (2018). https://doi.org/10.1109/TIE.2018.2803761.
  • [16] Yazdani, M. R., Filabadi, N. A. & Faiz, J. Conducted electro-magnetic interference evaluation of forward converter with symmetric topology and passive filter. IET Power Electron. 7, 1113-1120 (2014). https://doi.org/10.1049/iet-pel.2013.0320.
  • [17] Zhang, Z. & Bazzi, A. M. A virtual impedance enhancement based transformer-less active EMI filter for conducted EMI suppression in power converters. IEEE Trans. Power Electron. 37, 11962-11973 (2022). https://doi.org/10.1109/TPEL.2022.3172388.
  • [18] Zhao, X. et al. Planar common-mode EMI filter design and optimization for high-altitude 100-kW SiC inverter/rectifier system. IEEE Trans. Emerg. Sel. Topics Power Electron. 10, 5290-5303 (2022). https://doi.org/10.1109/JESTPE.2022.3144691.
  • [19] M’barki, Z., Rhazi, K. S. & Mejdoub, Y. A proposal of structure and control overcoming conducted electromagnetic interference in a buck converter. Int. J. Power Electron. Drive Syst. 13, 380 (2022). https://doi.org/10.11591/ijpeds.v13.i1.pp380-389.
  • [20] Ma, Z., Wang, S., Sheng, H. & Lakshmikanthan, S. Modeling, analysis and mitigation of radiated EMI due to PCB ground impedance in a 65W high-density active-clamp flyback converter. IEEE Trans. Ind. Electron. 70, 12267-12277 (2023). https://doi.org/10.1109/TIE.2023.3239904.
  • [21] CISPR 25-3. Radio disturbance characteristics for the protection of receivers used on board vehicles, boats and on devices - Limits and methods of measurement. (2018). https://doi.org/10.3403/02771447.
  • [22] CISPR 25-4. Radio disturbance characteristics for the protection of receivers used on board vehicles. boats and on devices - Limits and methods of measurement. (2014). https://doi.org/10.3403/02771447.
  • [23] CISPR 25-4. Radio disturbance characteristics for the protection of receivers used on board vehicles. boats and on devices - Limits and methods of measurement. (2016). https://doi.org/10.3403/02771447.
  • [24] Laour, M., Tahmi, R. & Vollaire, Ch. Modeling and analysis of conducted and radiated emissions due to common mode current of a buck converter. IEEE Trans. Electromagn. Compat. 59, 1260-1267 (2017). https://doi.org/10.1109/TEMC.2017.2651984.
  • [25] Britto, K. R. A., Vimala, R. & Dhanasekaran, R. Modelling of Conducted EMI in Flyback Switching Power Converters. in IEEE, International Conference on Recent Advancements in Electronical, Electronics and Control Engineering (ICONRAEeCE) 377-383 (IEEE, 2011). https://doi.org/10.1109/ICONRAEeCE.2011.6129801.
  • [26] Mendez, J. B., Freire, M. J. & Prats, M. A. M. Overcoming the effect of test fixtures on the measurement of parasitics of capacitors and inductors. IEEE Trans. Power Electron. 35, 15-19 (2020). https://doi.org/10.1109/TPEL.2019.2929209.
  • [27] Sakurai, T. & Tamaru, K. Simple formulas for two- and three-dimensional capacitances IEEE Trans. Electron. Devices 30, 183-185 (1983). https://doi.org/10.1109/T-ED.1983.21093.
  • [28] Park, H.-J. & Cho, S.-I. Empirical equations on electrical parameters of coupled microstrip lines for crosstalk estimation in printed circuit board. IEEE Trans. Adv. Packag. 24, 521-527 (2001). https://doi.org/10.1109/6040.982839.
  • [29] Bogatin, E. Design rules for microstrip capacitance. IEEE Trans. Components, Hybrids, Manuf. Technol. 11, 253-259 (1988). https://doi.org/10.1109/33.16649.
  • [30] Rondon-Pinilla, E., Morel, F., Vollaire, C. & Schanen, J. L. Modeling of a buck converter with a SiC JFET to predict EMC conducted emissions. IEEE Trans. Power Electron. 29, 2246-2260 (2013). https://doi.org/10.1109/TPEL.2013.2295053.
  • [31] Ruchli, A. E. Inductance calculations in a complex integrated circuit. IBM J. Res. Dev. 16, 470-481 (1972). https://doi.org/10.1147/rd.165.0470.
  • [32] Paul, C. R. Inductance: Loop and Partial.
  • [33] Kim, S. & Neikirk, D. P. Compact Equivalent Circuit Model for the Skin Effect. in 1996 IEEE MTT-S International Microwave Symposium Digest 1815-1818 (IEEE, 1996). https://doi.org/10.1109/MWSYM.1996.512297.
  • [34] González-Vizuete, P., Bernal-Méndez, J. & Martín-Prats, M. A. Reducing conducted emissions at the output of full-bridge DCDC converters with high voltage steps. Electronics 10, 1373 (2021). https://doi.org/10.3390/electronics10121373.
  • [35] Weens, Y., Idhir, N., Bausiere, R. & Franchaud, J. J. Modeling and simulation of unshielded and shielded energy cables in frequency and time domains. IEEE Trans. Magn. 42, 1876-1882 (2006). https://doi.org/10.1109/TMAG.2006.874306.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df2822b1-3d34-4fb5-8f0c-d83ae36002d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.