PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cooling rate and chemical composition influence on structure of Al-Si-Cu alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this work is to perform the investigation of cooling rate influence as well as rare earth metals modification on microstructure of the AC-AlSi7Cu3Mg and AC-AlSi12CuNiMg cast aluminium alloys. In the work also artificial neural networks were applied for investigations of the influence of the alloying additives on the properties of the AC-4XXX alloy. Design/methodology/approach: In the work the thermo - derivative analysis was applied for the reason to determine changes occurred in the Al-Si-Cu alloy caused by cooling rate change in a range between 0.1 and 1.4°C/s as well chemical composition of the investigated alloy. Also artificial neural networks were applied for prediction of the chemical composition and heat treatment parameters and influence on mechanical properties of the investigated aluminium alloys. Findings: The performed investigation are discussed for the reason of an possible improvement of thermal and structural properties of the alloy. Practical implications: The aim of the carried out investigations was to work out a computer aided tool for prediction of mechanical properties on the basis of registered parameters during the technological process as well as controlling the process in real time, which can be useful for foundry and cast industry for achieving of material with assumed properties. Originality/value: Chemical composition and cooling rate applied for the alloy influences the crystallisation process of the phases and eutectics, and that fore also the microstructure and determines at the same time the properties of these aluminium alloys. The achieved results can be used also for liquid metal processing in science and industry and obtaining of a required alloy microstructure and properties influenced by a proper production conditions. The determination of the technological process parameters as well chemical composition allows it to predict the material properties.
Słowa kluczowe
Rocznik
Strony
13--22
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskieg 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskieg 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskieg 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskieg 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A. Dobrzański, K. Labisz, A. Olsen, Microstructure and mechanical properties of the Al-Ti alloy with calcium addition, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 183-186.
  • [2] L.A. Dobrzański, K. Labisz, R. Maniara, A. Olsen, Microstructure and mechanical properties of the Al-Ti alloy with cerium addition, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 622-629.
  • [3] F.J. Tavitas-Medrano, J.E. Gruzleski, F.H. Samuel, S. Valtierra, H.W. Doty, Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminium cast alloys subjected to artificial aging, Materials Science and Engineering A 480/1-2 (2008) 356-364.
  • [4] B. Krupińska, K. Labisz, L.A. Dobrzański, Z. Rdzawski, Crystallisation kinetics of Zn alloys modified with Ce, La, Sr, Ti, B, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 50-57.
  • [5] M. Krupiński, K. Labisz, L.A. Dobrzański, Z. Rdzawski, Derivative thermo analysis of the Al-Si cast alloy with addition of rare earths metals, Archieves of Foundry Engineering 10/1 (2010) 79-82.
  • [6] E. Bayraktar, D. Katundi, Development of a new aluminium matrix composite reinforced with iron oxide (Fe3O4), Journal of Achievements in Materials and Manufacturing Engineering 38/1 (2010) 7-14.
  • [7] M.J. Caton, Jones J. Wayne, J.M. Boileau, J.E. Allison, The effect of solidification rate on the growth of small fatigue cracks in a cast 319-type aluminium alloy, Metallurgical and Materials Transactions A 30/12 (1999) 3055-3068.
  • [8] M.I. Hussain, K.S. Taraman, A.J. Filipovic, I. Garrn, Experimental study to analyse the workpiece surface temperature in deep hole drilling of aluminium alloy engine blocks using MQL technology, Journal of Achievements in Materials and Manufacturing Engineering 31/ 2 (2008) 485-490.
  • [9] M. Panušková, E. Tillová, M. Chalupová, Relation between mechanical properties and microstructure of cast aluminium alloy AlSi9Cu3, Strength of Materials 40/1 (2008) 98-101.
  • [10] J. Szajnar, T. Wróbel, Methods of inoculation of pure aluminium structure, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 95-98.
  • [11] A. Włodarczyk-Fligier, L.A. Dobrzański, M. Adamiak, Manufacturing of aluminium matrix composite materials reinforced by Al2O3 particles, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2007) 99-102.
  • [12] J.Q. Wang, B.J. Zhang, M.K. Tseng, G.G. Doncel, Effect of rare-earth elements on the microstructural characterization in rapidly quenched thermally strengthened aluminium alloys, Journal of Materials Science 33/2 (1998) 497-505.
  • [13] F.C. Robles Hernandez, M.B. Djurdjevic, W.T. Kierkus, J.H. Sokołowski, Calculation of the liquidus temperature for hypo and hypereutectic aluminum silicon alloys, Materials Science and Engineering A 396 (2005) 271-276.
  • [14] E. Fraś, Crystallization of metals, WNT, Warsaw, 2003 (in Polish).
  • [15] K. Labisz, M. Krupiński, L.A. Dobrzański, Phases morphology and distribution of the Al-Si-Cu alloy, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 309-316.
  • [16] G. Mrówka-Nowotnik, J. Sieniawski, A. Nowotnik, Effect of heat treatment on tensile and fracture toughness properties of 6082 alloy, Journal of Achievements in Materials and Manufacturing Engineering 32/2 (2009) 162-170.
  • [17] S.G. Shabestari, M. Malekan, Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis, Journal of Alloys and Compounds 492/1-2 (2010) 134-142.
  • [18] M. Wierzbińska, J. Sieniawski, The influence of long-lasting annealing on microstructure of AlCu4Ni2Mg2 Alloy, Journal of Achievements in Materials and Manufacturing Engineering 34/2 (2009) 122-129.
  • [19] L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys, Vol. 2., AFS, 1992.
  • [20] L. Bäckerud, G. Chai, Solidification Characteristics of Aluminum Alloys, Vol. 3, AFS, 1992.
  • [21] L.A. Dobrzański, M. Król, T. Tański, R. Maniara, Effect of cooling rate on the solidification behaviour of MC MgAl6Zn1 alloy, Journal of Achievements in Materials and Manufacturing Engineering 37/1 (2009) 65-69.
  • [22] L.A. Dobrzański, R. Maniara, J.H Sokołowski, The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristics, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 217-220.
  • [23] L.A. Dobrzański, R. Maniara, J. Sokołowski, W. Kasprzak, Effect of cooling rate on the solidification behavior of AC AlSi7Cu2 alloy, Journal of Materials Processing Technology 191/1-3 (2007) 317-320.
  • [24] W.T. Kierkus, J.H. Sokołowski, Recent Advances in Cooling Curve Analysis, A New Method for determining the ‘Base Line’ Equation, AFS Transactions, 107, 1999.
  • [25] J.H. Sokołowski, M.B. Djurdjevic, Ch.A. Kierkus, D.O. Northwood, Improvement of 319 aluminium alloy casting durability by high temperature solution treatment, Journal of Materials Processing Technology 109 (2001) 174-180.
  • [26] S. Górny, J. Sobczak, Modern cast materials based on non-ferrous metals, ZA-PIS, Cracow, 2005.
  • [27] L.A. Dobrzański, W. Kasprzak, M. Kasprzak, J.H. Sokołowski, A novel approach to the design and optimization of aluminium cast component heat treatment processes using advanced UMSA physical simulations, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 139-142.
  • [28] H. Yamagata, W. Kasprzak, M. Aniołek, H. Kurita, J.H. Sokołowski, The effect of average cooling rates on the microstructure of the Al-20% Si high pressure die casting alloy used for monolithic cylinder blocks, Journal of Materials Processing Technology 203 (2008) 333-341.
  • [29] H. Yamagata, H. Kurita, M. Aniołek, W. Kasprzak, J.H. Sokołowski, Thermal and metallographic characteristics of the Al-20% Si high-pressure die-casting alloy for monolithic cylinder blocks, Journal of Materials Processing Technology 199 (2008) 84-90.
  • [30] G. Pelayo, J.H. Sokołowski, R. Lashkari, A case based reasoning aluminum thermal analysis platform for the prediction of W319 Al cast component characteristics, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 7-17.
  • [31] L.A. Dobrzański, R. Maniara, J. Sokołowski, W. Kasprzak, Applications of artificial intelligence methods for modelling of solidus temperature for hypoeutectic Al-Si-Cu alloys, Int. Journal of Computational Materials Science and Surface Engineering 1/2 (2007) 214-255.
  • [32] L.A. Dobrzański, R. Maniara, J. Sokołowski, W. Kasprzak, M. Krupiński, Z. Brytan, Applications of the artificial intelligence methods for modelling of the ACAlSi7Cu alloy crystallization process, Journal of Materials Processing Technology 192-193 (2007) 582-587.
  • [33] N. Kuijpers, Kinetics of the b-AlFeSi to a-Al(FeMn)Si transformation in Al-Mg-Si alloys, Delft University of Technology, 2004.
  • [34] M. Krupiński, K. Labisz, L.A. Dobrzański, Structure investigation of the Al-Si-Cu alloy using derivative thermo analysis, Journal of Achievements in Materials and Manufacturing Engineering 34/1 (2009) 47-54.
  • [35] G. Mrówka-Nowotnik, J. Sieniawski, M. Wierzbińska, Morphology prediction of intermetallics formed in 4xxx type of aluminium alloy, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 262-268.
  • [36] M. Wierzbińska, G. Mrówka-Nowotnik, Identification of phase composition of AlSi5Cu2Mg aluminium alloy in T6 condition, Archives of Materials Science and Engineering 30/2 (2008) 85-88.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df25704f-6a78-4c62-8da9-efc81a8ddd78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.