Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Symulacje Monte Carlo i teoria pola samozgodnego stosowane do obliczeń profilów gęstości w stopach trójblokowych kopolimerów A1BA2
Konferencja
International Conference X-ray investigations of polymer structure (9 ; 03-06.12.2013 ; Zakopane, Poland)International Conference X-ray investigations of polymer structure (9 ; 03-06.12.2013 ; Zakopane, Poland)International Conference X-ray investigations of polymer structure (9 ; 03-06.12.2013 ; Zakopane, Poland)International Conference X-ray investigations of polymer structure (9 ; 03-06.12.2013 ; Zakopane, Poland)International Conference X-ray investigations of polymer structure (9 ; 03-06.12.2013 ; Zakopane, Poland)International Conference X-ray investigations of polymer structure (9 ; 03-06.12.2013 ; Zakopane, Poland)International Conference X-ray investigations of polymer structure (9 ; 03-06.12.2013 ; Zakopane, Poland)
Języki publikacji
Abstrakty
Using two complementary numerical methods, the lattice Monte Carlo simulations with parallel tempering and self-consistent field theory, we investigate the distribution of A1, B, and A2 segments in the lamellar nanostructure of A1BA2 triblock copolymer melts. While the lattice Monte Carlo method is in principle exact, it is limited by a variety of factors, such as finite size effects, long relaxation times required to reach the thermal equilibrium and geometry of the underlying lattice. It is also limited to chains consisting of relatively few segments. The self-consistent field theory, on the other hand, is free of the above limitations, but it is a mean-field approach which does not take into account the thermal fluctuations. Therefore we confront the results obtained from the two above methods and draw conclusions concerning both the comparison of the two methods and the localization of the A1 segments in the B domain with increasing length of the A1 block. For Monte Carlo simulations we employ two types of chains, 2-32-30 and 1-16-15, and for the self-consistent field theory we use the corresponding values of the thermodynamic incompatibility parameter, c/v.
Teorię samozgodnego pola średniego i symulacje Monte Carlo wykorzystano do oceny dystrybucji segmentów A1, B i A2 w strukturach warstwowych. Porównano wyniki uzyskane za pomocą tych dwóch metod i przedstawiono wnioski dotyczące zmian lokalizacji segmentów A1 w domenie B wraz ze zwiększaniem długości bloków A1.
Czasopismo
Rocznik
Tom
Strony
580--584
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- A. Mickiewicz University, Faculty of Physics, ul. Umultowska 85, 61-614 Poznan, Poland
autor
- A. Mickiewicz University, Faculty of Physics, ul. Umultowska 85, 61-614 Poznan, Poland
autor
- A. Mickiewicz University, Faculty of Physics, ul. Umultowska 85, 61-614 Poznan, Poland
Bibliografia
- [1] Bates F.S., Fredrickson G.H.: Phys. Today 1999, 52, 32, http://dx.doi.org/10.1063/1.882522
- [2] Bailey T.S., Hardy C.M., Epps T.H., Bates F.S.: Macromolecules 2002, 35, 7007, http://dx.doi.org/10.1021/ma048762s
- [3] Takenaka M., Wakada T., Akasaka S., Nishisuji S., Saijo K., Shimizu H., Kim M.I., Hasegawa H.: Macromolecules 2007, 40, 4399, http://dx.doi.org/10.1021/ma070739u
- [4] Hamley I.W.: “Developments in Block Copolymer Science and Technology”, John Wiley & Sons, Berlin 2004.
- [5] Fredrickson G.H.: “The Equlibrium Theory of Inhomogeneous Polymers”, Clarendon Press, Oxford 2006.
- [6] Khandpur A.K., Forster S., Bates F.S., Hamley I.W., Ryan A.J., Bras W., Almdal K., Mortensen K.: Macromolecules 1995, 28, 8796, http://dx.doi.org/10.1021/ma00130a012
- [7] Leibler L.: Macromolecules 1980, 13, 1602, http://dx.doi.org/10.1021/ma60078a047
- [8] Matsen M.W., Schick M.: Macromolecules 1994, 27, 187, http://dx.doi.org/10.1021/ma00079a027
- [9] Matsen M.W.: J. Phys.: Condens. Matter 2002, 14, R21, http://dx.doi.org/10.1088/0953-8984/14/2/201
- [10] Fredrickson G.H., Helfand E.: J. Chem. Phys. 1987, 87, 697, http://dx.doi.org/10.1063/1.453566
- [11] Lennon E.M., Katsov K., Fredrickson G.H.: Phys. Rev. Lett. 2008, 101, 138 302, http://dx.doi.org/10.1103/PhysRev-Lett.101.138302
- [12]Wołoszczuk S., Banaszak M.: Eur. Phys. J. E. 2010, 33 (04), 343, http://dx.doi.org/10.1140/epje/i2010-10680-5
- [13]Wołoszczuk S., Banaszak M., Spontak R.: J. Polym. Sci. B: Polym. Phys. 2013, 51, 343, http://dx.doi.org/10.1002/polb.23215
- [14] Banaszak M., Koper A., Knychała P., Lewandowski K.: Acta Physica Polonica A 2012, 121 (3).
- [15] Dzięcielski M., Lewandowski K., Banaszak M.: Comput. Methods Sci. Technol. 2011, 17 (1—2), 17.
- [16] Banaszak M., Whitmore M.D.: Macromolecules 1992, 25 (13), 3406, http://dx.doi.org/10.1021/ma00039a015
- [17] Matsen M.W., Schick M.: Phys. Rev. Lett. 1994, 72, 2660, http://dx.doi.org/10.1103/PhysRevLett.72.2660
- [18] Matsen M.W., Whitmore M.D.: J. Chem. Phys. 1996, 105, 9698, http://dx.doi.org/10.1063/1.472799
- [19] Pakula T. in: “Simulation Methods for Polymers”, (Ed. Kotelyanskii M.J., Thedorou D.N.), Marcel-Dekker 2004, Chap. 5.
- [20] Knychała P., Dzięcielski M., Banaszak M., Balsara N.: Macromolecules 2013, 46 (14), 5724, http://dx.doi.org/10.1021/ma400078y
- [21] Banaszak M., Woloszczuk S., Jurga S., Pakula T.: J. Chem. Phys. 2003, 119, 11 451, http://dx.doi.org/10.1103/Phys-RevE.66.031804
- [22] Beardley T.M., Matsen M.W.: Eur. Phys. J. E 2009, 32, 255, http://dx.doi.org/10.1140/epje/i2010-10651-x
- [23] Lewandowski K., Knychala P., Banaszak M.: Comput. Methods Sci. Technol. 2010, 16, 29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df2251af-8e49-4717-9d86-85b3c48da651