PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie nanocząstek srebra w laserowej spektrometrii mas oraz w obrazowaniu MS : przegląd

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging
Języki publikacji
PL
Abstrakty
EN
Metallic nanoparticles, especially silver nanoparticles, have attracted much attention due to their unique physical, chemical and opto-electronic properties. Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. AgNPs have been demonstrated to allow efficient capture of different chemical compounds (including amino acids, cholesterol, fatty acids) on their surface, thus efficiently promoting their desorption and gas phase cationisation. The minimum detectable amount for those organic and biological molecules is often in the fmol range [23]. Despite the fact that scientists have developed a variety of methods for the synthesis of silver nanoparticles, there are still problems with obtaining surfaces with nanoparticles of high durability and chemical purity. Recently, a successful application of cationic silver nanoparticles (AgNPs), which were placed on MALDI targets for highly sensitive detection of d-ribose at attomolar levels as well as analysis of biological samples such as urine and blood serum [51] was shown. The application of new 109AgNPET surface has been presented with examples of analysis of nucleosides and nucleic bases [60]. One of the main directions of development of LDI-MS is the imaging mass spectrometry (MSI), enabling the visualization of surface distribution of biological samples. The critical limitations of the spatial resolution of MALDI-MSI are the size of the organic matrix crystals and the analyte migration during the matrix application process. To overcome these problems, researchers tried to use nanoparticles as substitutes of organic matrices. In 2013 Ruman group presented that direct contact of the analysed object with Ag nanoparticle-covered target permits direct surface transfer of chemical compounds. The active surface becomes then a “chemical photograph” of an object and allows MS analysis and MS imaging [68].
Rocznik
Strony
519--539
Opis fizyczny
Bibliogr. 69 poz., rys., wykr.
Twórcy
autor
  • Politechnika Rzeszowska, Wydział Chemiczny, al. Powstańców Warszawy 6, 35-959 Rzeszów
autor
  • Politechnika Rzeszowska, Wydział Chemiczny, al. Powstańców Warszawy 6, 35-959 Rzeszów
autor
  • Politechnika Rzeszowska, Wydział Chemiczny, al. Powstańców Warszawy 6, 35-959 Rzeszów
Bibliografia
  • [1] M. Karas, D. Bachmann, U. Bahr, F. Hillenkamp, Int. J. Mass Spectrom. Ion Processes, 1987, 78, 53.
  • [2] F. Hillenkamp, M. Karas, R.C. Beavis, B.T. Chait, Anal. Chem., 1991, 63, 1193.
  • [3] F. Hillenkamp, M. Karas, Methods Enzymol., 1990, 193, 280.
  • [4] J. Albrethsen, Clin. Chem., 2007, 53, 852.
  • [5] R. Knochenmuss, F. Dubois, M.J. Dale, R. Zenobi, Rapid Commun. Mass Spectrom., 1996, 10, 871.
  • [6] M. Karas, F. Hillenkamp, Anal. Chem., 1988, 60, 2299.
  • [7] P.C. Lin, P.H. Chou, S.H. Chen, K.L. Liao, K.Y. Wang, Y.J. Chen, C.C. Lin, Small, 2006, 4, 485.
  • [8] B. Domon, R. Aebersold, Science, 2006, 312, 212.
  • [9] S. Berkenkamp, F. Kirpekar, F. Hillenkamp, Science, 1998, 281, 260.
  • [10] K.C. Ho, P.J. Tsai, Y.S. Lin, Y.C. Chen, Anal. Chem., 2004, 76, 7162.
  • [11] K. Shrivas, H.F. Wu, Rapid Commun. Mass Spectrom., 2007, 21, 3103.
  • [12] K. Shrivas, H.F. Wu, J. Mass Spectrom., 2007, 42, 1637.
  • [13] R. Pilolli, F. Palmisano, N. Cioffi, Anal. Bioanal. Chem., 2012, 402, 601.
  • [14] K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, T. Matsuo, Rapid Commun. Mass Spectrom., 1988, 2, 151.
  • [15] N. Cioffi, L. Colaianni, R. Pilolli, C.D. Calvano, F. Palmisano, P.G. Zambonin, Anal. Bioanal. Chem., 2009, 394, 1375.
  • [16] J. Sunner, E. Dratz, Y.C. Chen, Anal. Chem., 1995, 67, 4335.
  • [17] M.J. Dale, R. Knochenmuss, R. Zenobi, Anal. Chem., 1996, 68, 3321.
  • [18] M. Schurenberg, K. Dreisewerd, F. Hillenkamp, Anal. Chem., 1999, 71, 221.
  • [19] Y.E. Silina, M. Koch, D.A. Volmer, J. Mass Spectrom., 2014, 49, 468.
  • [20] I.D.G. Macdonald, W.E. Smith, Langmuir, 1999, 12, 706.
  • [21] L. Hua, J. Chen, L. Ge, S.N. Tan, J. Nanopart. Res., 2007, 9, 1133.
  • [22] S.D. Sherrod, A.J. Diaz, W.K. Russell, P.S. Cremer, D.H. Russell, Anal. Chem., 2008, 80, 6796.
  • [22] K. Shrivas, H.F. Wu, Rapid Commun. Mass Spectrom., 2008, 22, 2863.
  • [23] F. Frederix, J. Friedt, K. Choi, W. Laureyn, A. Campitelli, D. Mondelaers, G. Maes, G. Borghs, Anal. Chem., 2003, 75, 6894.
  • [24] C.L. Su, W.L. Tseng, Anal. Chem., 2007, 79, 1626.
  • [25] C.H. Teng, K.C. Ho, Y.S. Lin, Y.C. Chen, Anal. Chem., 2004, 76, 4337.
  • [26] P.R. Sudhir, H.F. Wu, Z.C. Zhou, Anal. Chem., 2005, 77, 7380.
  • [27] K. Shrivas, H.F. Wu, Anal. Chem., 2008, 80, 2583.
  • [28] P.T. Sudhir, K. Shrivas, Z.C. Zhou, H.F. Wu, Rapid Commun. Mass Spectrom., 2008, 22, 3076.
  • [29] S.K. Kailasa, H.F. Wu, Talanta, 2010, 83, 527.
  • [30] L. Shastri, H.N. Abdelhamid, M. Nawaz, H.-F. Wu, RSC Adv., 2015, 5, 41595.
  • [31] M. Inuta, R. Arakawa, H. Kawasaki, Anal. Methods, 2013, 19, 5031.
  • [32] M. Yang, T. Fujino, Chem. Phys. Lett., 2013, 576, 61.
  • [33] T.C. Chiu, L.C. Chang, C.K. Chiang, H.T. Chang, J. Am. Soc. Mass Spectrom., 2008, 19, 1343.
  • [34] P.C. Lee, D. Meisel, J. Phys. Chem., 1982, 86, 3391.
  • [35] M.T. Wang, M.H. Liu, C.R.C. Wang, S.Y. Chang, J. Am. Soc. Mass Spectrom., 2009, 20, 1925.
  • [36] Y. Gholipour, S.L. Giudicessi, H. Nonami, R. Erra-Balsells, Anal. Chem., 2010, 82, 5518.
  • [37] B. Nie, R.N. Masyukoa, P.W. Bohn, Analyst, 2012, 137, 1421.
  • [38] B. Vrbková, V. Roblová, E.S. Yeung, J. Preisler, J. Chromatogr. A, 2014, 1358, 102.
  • [39] S. Taira, H. Taguchi, R. Fukuda, K. Uematsu, Y. Ichiyanagi, Y. Tanaka, Y. Fujii, H. Katano, Mass Spectrom., 2014, 3, S0025.
  • [40] T.C. Chiu, Int. J. Mol. Sci., 2014, 15, 7266.
  • [41] J.J. Bright, M.A. Claydon, M. Soufian, D.B. Gordon, J. Microbiol. Methods, 2002, 48, 127.
  • [42] Z.P. Yao, P.A. Demirev, C. Fenselau, Anal. Chem., 2002, 74, 2529.
  • [43] C.H. Lee, J. Gopal, H.F. Wu, Biosens. Bioelectron., 2012, 31, 77.
  • [44] J. Gopal, H.-F. Wu, C.H. Lee, Analyst, 2011, 136, 5077.
  • [45] J. Gopal, M. Manikandan, N. Hasan, C.-H. Lee, H.-F. Wu, J. Mass Spectrom., 2013, 48, 119.
  • [46] J. Nizioł, Z. Zieliński, W. Rode, T. Ruman, Int. J. Mass Spectrom., 2013, 335, 22.
  • [47] Y.E. Silina, F. Meier, V.A. Nebolsin, M. Koch, D.A. Volmer, J. Am. Soc. Mass Spectrom., 2014, 25, 841.
  • [48] M.F. Wyatt, S. Ding, B.K. Stein, A.G. Brenton, R.H. Daniels, J. Am. Soc. Mass Spectrom., 2010, 21, 1256.
  • [49] K.P. Law, J.R. Larkin, Bioanal. Chem., 2011, 399, 2597.
  • [50] J. Nizioł, W. Rode, B. Laskowska, T. Ruman, Anal. Chem., 2013, 85, 1926.
  • [51] C. Lei, K. Qian, O. Noonan, A. Nouwens, C. Yu, Nanoscale, 2013, 5, 12033.
  • [52] C.-C. Hu, M.-F. Huang, H.-T. Chang, Bioanalysis, 2013, 5, 633.
  • [53] J.A. Stolee, B.N. Walker, V. Zorba, R.E. Russo, A. Vertes, Phys. Chem. Chem. Phys., 2012, 14, 8453.
  • [54] J. Wei, J.M. Buriak, G. Siuzdak, Nature, 1999, 399, 243.
  • [55] O.A. Boryak, M.V. Kosevich, V.V. Chagovets, V.G. Zobnina, V.V. Orlov, V.S. Shelkovsky, S.G. Stepanian, J. Anal. Chem., 2012, 67, 994. 538
  • [56] H. Yan, N. Xu, W.-Y. Huang, H.-M. Han, S.-J. Xiao, Int. J. Mass Spectrom., 2009, 281, 1.
  • [57] M. Dufresne, A. Thomas, J. Breault-Turcot, J.-F. Masson, P. Chaurand, Anal. Chem., 2013, 85, 3318.
  • [58] R.C. Gamez, E.T. Castellana, D.H. Russell, Langmuir, 2013, 29, 6502.
  • [59] J. Nizioł, T. Ruman, Int. J. Chem. Eng. Appl., 2013, 2, 46.
  • [60] S. Hong, J.S. Lee, J. Ryu, S.H. Lee, D.Y. Lee, D.-P. Kim, C.B. Park, H. Lee, Nanotechnology, 2011, 22, 494020.
  • [61] T. Hayasaka, N. Goto-Inoue, N. Zaima, K. Shrivas, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, M. Setou, J. Am. Soc. Mass Spectrom., 2010, 21, 1446.
  • [62] J.C. Jurchen, S.S. Rubakhin, J.V. Sweedler, J. Am. Soc. Mass Spectrom., 2005, 16, 1654.
  • [63] D.C. Perdian, S. Cha, J. Oh, D.S. Sakaguchi, E.S. Yeung, Y.J. Lee, Rapid Commun. Mass Spectrom., 2010, 24, 1147.
  • [64] S.N. Jackson, K. Baldwin, L. Muller, V.M. Womack, J.A. Schultz, C. Balaban, A.S. Woods, Anal. Bioanal. Chem., 2014, 406, 1377.
  • [65] A.S. Mohammadi, J.S. Fletcher, P. Malmberg, A.G. Ewing, Surf. Interface Anal., 2014, 46, 379.
  • [66] J.H. Jun, Z. Song, Z. Liu, B.J. Nikolau, E.S. Yeung, Y.J. Lee, Anal. Chem., 2010, 82, 3255.
  • [67] J. Nizioł, T. Ruman, Anal. Chem., 2013, 85, 12070.
  • [68] N. Lauzon, M. Dufresne, V. Chauhan, P. Chaurand, J. Am. Soc. Mass Spectrom., 2015, 26, 878.
Uwagi
Błąd w numeracji bibliografii - podwójny nr. 22
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df223b24-e618-4387-8de0-559e70228b1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.