PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Van der Waals materials for HOT infrared detectors : a review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the last decade several papers have announced usefulness of two-dimensional materials for high operating temperature photodetectors covering long wavelength infrared spectral region. Transition metal dichalcogenide photodetectors, such as PdSe₂/MoS₂ and WS₂/HfS₂ heterojunctions, have been shown to achieve record detectivities at room temperature (higher than HgCdTe photodiodes). Under these circumstances, it is reasonable to consider the advantages and disadvantages of two-dimensional materials for infrared detection. This review attempts to answer the question thus posed.
Rocznik
Strony
art. no. e140551
Opis fizyczny
Bibliogr. 53 poz., rys., wykr., tab.
Twórcy
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Rogalski, A. 2D Materials for Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2020).
  • [2] Rogalski, A. Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2019).
  • [3] Rogalski, A. Quantum well photoconductors in infrared detector technology. J. Appl. Phys. 93, 4355–4391 (2003). https://doi.org/10.1063/1.1558224
  • [4] Kinch, M. A. State-of-the-Art Infrared Detector Technology. (SPIE Press, Bellingham, 2014).
  • [5] Rogalski, A., Martyniuk P. & Kopytko, M. Challenges of small-pixel infrared detectors: a review. Rep. Prog. Phys. 79, 046501-1–42 (2016). https://doi.org/10.1088/0034-4885/79/4/046501
  • [6] Rogalski, A., Martyniuk, P., Kopytko, M. & Hu, W. Trends in performance limits of the HOT infrared photodetectors. Appl. Sci. 11, 501 (2021). https://doi.org/10.3390/app11020501
  • [7] Piotrowski J. & Rogalski, A. Comment on “Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe” [J. Appl. Phys. 74, 4774 (1993)]. J. Appl. Phys. 80, 2542–2544 (1996). https://doi.org/10.1063/1.363043
  • [8] Robinson, J., Kinch, M., Marquis, M., Littlejohn, D. & Jeppson, K. Case for small pixels: system perspective and FPA challenge. Proc. SPIE 9100, 91000I-1–10 (2014). https://doi.org/10.1117/12.2054452
  • [9] Holst G. C. & Lomheim, T. C. CMOS/CCD Sensors and Camera Systems. (JCD Publishing and SPIE Press, Winter Park, 2007).
  • [10] Holst, G. C. & Driggers, R. G. Small detectors in infrared system design. Opt. Eng. 51, 096401-1–10 (2012).
  • [11] Boreman, G. D. Modulation Transfer Function in Optical and Electro-Optical Systems. (2nd edition) (SPIE Press, Bellingham, 2021).
  • [12] Higgins, W. M., Seiler, G. N., Roy, R. G. & Lancaster, R. A. Standard relationships in the properties of Hg1–xCdxTe. J. Vac. Sci. Technol. A 7, 271–275 (1989). https://doi.org/10.1116/1.576110
  • [13] Chu, J. H., Li, B., Liu, K. & Tang, D. Empirical rule of intrinsic absorption spectroscopy in Hg1-xCd xTe. J. Appl. Phys. 75, 1234 (1994). https://doi.org/10.1063/1.356464
  • [14] Jariwala, D., Davoyan, A. R., Wong, J. & Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: promise and outlook. ACS Photonics 4, 2962-2970 (2017). https://doi.org/10.1021/acsphotonics.7b01103
  • [15] Kinch, M. A. et al. Minority carrier lifetime in p-HgCdTe. J. Electron. Mater. 34, 880–884 (2005). https://doi.org/10.1007/s11664-005-0036-2
  • [16] Lee, D. et al. Law 19: the ultimate photodiode performance metric. Proc. SPIE 11407, 114070X (2020). https://doi.org/10.1117/12.2564902
  • [17] Yang, Z., Dou, J. & Wang, M. Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors. in Two-Dimensional Materials for Photodetector (ed. Nayak, P. K.) 1–20 (IntechOpen, 2018). http://doi.org/10.5772/intechopen.74021
  • [18] Pi, L., Li, L., Liu, K., Zhang, Q. Li, H. & Zhai, T. Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater. 29, 1904932 (2019). https://doi.org/10.1002/adfm.201904932
  • [19] Vargas-Bernal, R. Graphene Against Other Two-Dimensional Materials: A Comparative Study on the Basis of Photonic Applications. in Graphene Materials (eds. Kyzas, G. Z. & Mitropoulos, A. Ch.) 103–121 (IntechOpen, 2017). http://doi.org/10.5772/67807
  • [20] Rogalski, A., Martyniuk, P. & Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quantum Electron. 68, 100228 (2019). https://doi.org/10.1016/j.pquantelec.2019.100228
  • [21] Delaunay, P. Y., Nosho, B. Z., Gurga, A. R., Terterian, S. & Rajavel, R. D. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL. Proc. SPIE 10177, 101770T-1–12 (2017). https://doi.org/10.1117/12.2266278
  • [22] Lawson, W. D., Nielson, S., Putley, E. H. & Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. J. Phys. Chem. Solids 9, 325–329 (1959). https://doi.org/10.1016/0022-3697(59)90110-6
  • [23] Lee, D. et al. Law 19 – The Ultimate Photodiode Performance Metric. in Extended Abstracts. The 2019 U.S. Workshop on the Physics and Chemistry of II-VI Materials 13–15 (2019).
  • [24] Rogalski, A., Kopytko, M., Martyniuk, P. & Hu, W. Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors. Opto-Electron. Rev. 28, 82–92 (2020). https://doi.org/10.24425/opelre.2020.132504
  • [25] Tennant, W. E., Lee, D., Zandian, M., Piquette, E. & Carmody, M. MBE HgCdTe technology: A very general solution to IR detection, described by ‘Rule 07’, a very convenient heuristic. J. Electron. Mater. 37, 1406–1410 (2008). https://doi.org/10.1007/s11664-008-0426-3
  • [26] Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
  • [27] Du, S. et al. A broadband fluorographene photodetector. Adv. Mater. 29, 1700463 (2017). https://doi.org/10.1002/adma.201700463
  • [28] Long, M. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13, 2511−2519 (2019). https://doi.org/10.1021/acsnano.8b09476
  • [29] Chen, Y. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 4, 357–363 (2021). https://doi.org/10.1038/s41928-021-00586-w
  • [30] Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11, 11724–11731 (2017). https://doi.org/10.1021/acsnano.7b07028
  • [31] Lukman, S. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675–682 (2020). https://doi.org/10.1038/s41565-020-0717-2
  • [32] VIGO System Catalog 2018/2019. VIGO System S.A. https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf (2018).
  • [33] Mercury Cadmium Telluride Detectors. Teledyne Judson Techno-logies LLC http://www.teledynejudson.com/prods/Documents/MCT_ shortform_Dec2002.pdf (2002).
  • [34] Zhong, F. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Res. 14, 1840–1862 (2021). https://doi.org/10.1007/s12274-020-3247-1
  • [35] Huang, L. et al. Waveguide integrated black phosphorus photo-detector for mid-infrared applications. ACS Nano 13, 913–921 (2019). https://doi.org/10.1021/acsnano.8b08758
  • [36] Bullock, J. et al. Polarization-resolved black phosphorus/ molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 12, 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8
  • [37] Yu, X. et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9, 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
  • [38] Yu, X. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nat. Commun. 9, 4299 (2018). https://doi.org/10.1038/s41467-018-06776-z
  • [39] Long, M., Wang, P., Fang, H. & Hu. W. Progress, challenges, and opportunities for 2D material-based photodetectors. Adv. Funct. Mater. 1803807 (2018). https://doi.org/10.1002/adfm.201803807
  • [40] Wang, P. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 29, 1604439 (2017). https://doi.org/10.1002/adma.201604439
  • [41] Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
  • [42] Konstantatos, G. et al. Hybrid graphene-quantum dot photo-transistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012). https://doi.org/10.1038/nnano.2012.60
  • [43] Phillips, J. Evaluation of the fundamental properties of quantum dot infrared detectors. J. Appl. Phys. 91, 4590–4594 (2002). https://doi.org/10.1063/1.1455130
  • [44] Jerram P. & Beletic, J. Teledyne’s high performance infrared detectors for space missions. Proc. SPIE 11180, 111803D-2 (2018). https://doi.org/10.1117/12.2536040
  • [45] Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductor. Chem. Rev. 44, 3691–3718 2015. https://doi.org/10.1039/C5CS00106D
  • [46] Wang, J. et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 13, 1700894 (2017). https://doi.org/10.1002/smll.201700894
  • [47] An, J. et al. Research development of 2D materials-based photodetectors towards mid-infrared regime. Nano Select 2, 527 (2021). https://doi.org/10.1002/nano.202000237
  • [48] Wu, D. et al. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A 8, 3632–3642 (2020). https://doi.org/10.1039/C9TA13611H
  • [49] Zeng, L.-H. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29, 1806878 (2019). https://doi.org/10.1002/adfm.201806878
  • [50] Imec shows excellent performance in ultra-scaled FETs with 2D-material channel. Imec. https://www.imec-int.com/en/articles/imec-shows-excellent-performance-in-ultra-scaled-fets-with-2d-material-channel (2019).
  • [51] Scaling Up Large-area Integration of 2D Materials. Compound Semiconductor. https://compoundsemiconductor.net/article/112712/Scaling_Up_Large-area_Integration_Of_2D_Materials (2021).
  • [52] Briggs, N. et al. A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019). https://doi.org/10.1088/2053-1583/aaf836
  • [53] IRDS International Roadmap for Devices and SystemsTM 2018 Update. IEEE. https://irds.ieee.org/images/files/pdf/2018/2018IRDS _MM.pdf (2018).
Uwagi
EN
This work was supported by the funds granted to the Faculty of Advanced Technologies and Chemistry, Military University of Technology, within the subsidy for maintaining research potential in 2021, grant no. UGB-842/2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df1d91b6-8f33-4f23-b7c7-59f296f2498b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.