PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Monte Carlo validation of the pairwise comparisons method accuracy improvement for 3D objects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Monte Carlo study of the pairwise comparisons method has been designed to validate the accuracy improvement by the pairwise comparisons method for 3D objects. For this, not-so-irregular objects were randomly selected. It is important to emphasize that this study focuses on testing the accuracy of the method rather than the users’ skills. The users’ inability to assess the volume of unrestricted random objects (e.g., a porcupine) would only deviate the results. As a side product, semi-randomly generated 3D objects can also be useful in many other research areas, such as software validation and verification, microeconomics (consumer preferences for products), computer entertainment, and even agriculture (selecting of fruits and vegetables). Further generalizations incorporating additional dimensions, as a comparison of different investment opportunities, can be useful, for example in enhancing financial decision-making processes.
Twórcy
  • Laurentian University, Sudbury, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
  • GH University of Krakow, al. Adama Mickiewicza 30, 30-059 Kraków, Poland
  • Laurentian University, Sudbury, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
  • University of Alberta, Edmonton, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
  • Mathematical and Physical Science Foundation, Slagelse, Denmark
autor
  • Laurentian University, Sudbury, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
  • Rzeszow University of Technology, Rzeszów, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • University of Economics in Katowice, ul. 1 Maja 50, 40-287 Katowice, Poland
Bibliografia
  • 1. Llull R. Artificium electionis personarum, Biblioteca Apostolica Vaticana, Cod. Vat. lat. 9332, f. 11r–12v (before 1283).
  • 2. Koczkodaj W.W. Statistically accurate evidence of improved error rate by pairwise comparisons, Perceptual and Motor Skills 1996, 82(1), 43–48. https://doi.org/10.2466/pms.1996.82.1.43.
  • 3. Metropolis N., Ulam S. The Monte Carlo method, Journal of the American Statistical Association 1949, 44(247), 335–341. https://doi.org/10.1080/01621459.1949.10483310.
  • 4. Barbu A., Zhu S. C. Monte Carlo methods, Springer, Singapore, 2020. https://doi.org/10.1007/978-981-13-2971-5.
  • 5. Koczkodaj W.W., Szybowski J. The limit of inconsistency reduction in Pairwise comparisons, International Journal of Applied Mathematics and Computer Science, 2016, 26(3), 721–729. https://doi.org/10.1515/amcs-2016-0050.
  • 6. Koczkodaj W.W., Szybowski J., Wajch E. Inconsistency indicator maps on groups for pairwise comparisons, International Journal of Approximate Reasoning, 2016, 69, 81–90. http://dx.doi.org/10.1016/j.ijar.2015.11.007.
  • 7. Smarzewski R., Rutka P. Consistent projections and indicators in pairwise comparisons, International Journal of Approximate Reasoning, 2020, 124, 123–132. https://doi.org/10.1016/j.ijar.2020.06.001.
  • 8. Amenta P., Lucadamo A., Marcarelli G. On the transitivity and consistency approximated thresholds of some consistency indices for pairwise comparison matrices, Information Sciences, vol. 2020, 507, 274–287. https://doi.org/10.1016/j.ins.2019.08.042.
  • 9. Koczkodaj W.W. Testing the accuracy enhancement of pairwise comparisons by a Monte Carlo experiment, Journal of Statistical Planning and Inference 1998, 69(1), 21–31. https://doi.org/10.1016/S0378-3758(97)00131-6.
  • 10. Auer T., Held M. Heuristics for the generation of random polygons, in: Fiala F., Kranakis E., Sack J.R. (Eds.) Proc. 8th Canad. Conf. Computat. Geometry, Carleton University Press, Ottawa, Canada, 1996, 38–44. https://doi.org/10.1515/9780773591134-009.
  • 11. Valliant R., Dorfman A.H., Royall R.M. Finite population sampling and inference: a prediction approach, Wiley, New York, 2000.
  • 12. Wu C. Statistical inference with non-probability survey samples. Survey Methodology, Statistics Canada 2022, 48(2), 283–312. http://www.statcan.gc.ca/pub/12-001-x/2022002/article/00002-eng.htm.
  • 13. Ryan T.P. Sample size determination and power. John Wiley & Sons, New Jersey, 2013.
  • 14. Kieser M. Methods and applications of sample size calculation and recalculation in clinical trials. Springer, Cham, 2020.
  • 15. Verma J.P., Verma P. Determining sample size and power in research studies. Springer, Singapore, 2020.
  • 16. Wackerly D.D., Mendenhall W., Scheaffer R.L. Mathematical statistics with applications. Vol. 7., Thomson Brooks/Cole, Belmont, 2008.
  • 17. Fisz M. Probability Theory and Mathematical Statistics, 3rd edition, New York, Wiley, 1980.
  • 18. James G., Witten D., Hastie T., Tibshirani R. An introduction to statistical learning with applications in R, Springer, New York, 2021. https://doi.org/10.1007/978-1-0716-1418-1.
  • 19. Antal E., Tillo Y. A direct bootstrap method for complex sampling designs from a finite population, Journal of the American Statistical Association 2011, 106(494), 534–543. https://doi.org/10.1198/jasa.2011.tm09767.
  • 20. Żądło T. On asymmetry of prediction errors in small area estimation, Statistics in Transition New Series 2017, 18(3), 413–432. https://doi.org/10.59170/stattrans-2017-021.
  • 21. Rudek R. A generic optimization framework for scheduling problems under machine deterioration and maintenance activities, Computers & Industrial Engineering, 2022, 174, 108800.1–22.
  • 22. Rudek R. Scheduling on parallel processors with varying processing times, Computers & Operations Research, 2017, 81, 90–101. https://doi.org/10.1016/j.cor.2016.12.007.
  • 23. Koczkodaj W.W., Mazurek M., Strzalka D., Wolny-Dominiak A., Woodbury-Smith M. Electronic Health Record Breaches as Social Indicators. Soc Indic Res 2019, 141, 861–871. https://doi.org/10.1007/s11205-018-1837-z.
  • 24. Dymora P., Mazurek M., Łyczko K. The effectiveness analysis of selected IT tools for predictions of the Covid-19 pandemic, 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS), Sofia, Bulgaria, 2022, 583–586. https://doi.org/10.15439/2022F65.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df150781-d44a-47e5-b370-e2318d0d0e0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.