PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Advances in hybridised and inorganic composite metal halide perovskites : a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, metal halide perovskites have gained significant attention due to their unique optical and electronic properties of semiconductor materials, which make them ideal for use in sustainable and energy-efficient devices. These devices include solar cells, lasers, and light-emitting diodes. Therefore, this review aims initially to provide an overview of the most important characteristics of metal halide perovskites, including their engineering development in various types, such as those based on lead or lead-free materials, like tin or germanium. Additionally, perovskites made from purely inorganic compounds like caesium bromide, chloride, or iodide, as well as hybrids mixed with organic compounds like formamidinium and methylammonium halides will be discussed. The goal is to improve their stability and efficiency. Secondly, some of the studies have proposed technologies combining electronic and mechanical characteristics of flexibility or rigidity as required, promoting their synthesis with different materials such as polymers (poly methyl methacrylate, polyvinylidene fluoride), biopolymers (starch, cyclodextrin, polylactic acid, and polylysines), among others. Finally, the subject of this work is to establish the main purpose of the research carried out so far, which is to develop simpler and more scalable processes at industrial level to achieve greater efficiency and duration in storage, exposure to visible light, critical environments, humid or high temperatures.
Słowa kluczowe
Rocznik
Strony
art. no. e148221
Opis fizyczny
Bibliogr. 100 poz., rys., tab., wykr.
Twórcy
  • Universidad Pedagógica y Tecnológica de Colombia, Sogamoso, Boyacá, Colombia
autor
  • Universidad Pedagógica y Tecnológica de Colombia, Sogamoso, Boyacá, Colombia
  • National Polytechnic Institute, Ciudad de México, Mexico
  • Universidad Pedagógica y Tecnológica de Colombia, Sogamoso, Boyacá, Colombia
Bibliografia
  • [1] Strielkowski, W., Veinbender, T., Tvaronavičienė, M. & Lace, N. Economic efficiency and energy security of smart cities. Econ. Res.-Econ, Istraz. 33, 788-803 (2020). https://doi.org/10.1080/1331677X.2020.1734854.
  • [2] Khan, I. & Halder, P. K. Electrical energy conservation through human behavior change: Perspective in Bangladesh. Int. J. Renew. Energy Res. 6, 43-52 (2016). https://doi.org/10.20508/ijrer.v6i1.3030.g6758.
  • [3] Rehman, A., Rauf, A., Ahmad, M., Chandio, A. A. & Deyuan, Z. The effect of carbon dioxide emission and the consumption of electrical energy, fossil fuel energy, and renewable energy, on economic performance: evidence from Pakistan. Environ. Sci. Pollut. Res. 26, 21760-21773 (2019). https://doi.org/10.1007/s11356-019-05550-y.
  • [4] John, S. V. Next generation bulk heterojunction organic photo-voltaic and light emitting diode sytems of novel polycyclic aromatic hydrocarbon. (University of the Western Cape, 2017). John_PhD_NSC_2017.pdf.
  • [5] AL Shaqsi, A. Z., Sopian, K. & Al-Hinai, A. Review of energy storage services, applications, limitations, and benefits. Energy Rep. 6, 288-306 (2020). https://doi.org/10.1016/J.EGYR.2020.07.028.
  • [6] Ellis, E. V, Gonzalez, E. W., Kratzer, D. A., McEachron, D. L. & Yeutter, G. Auto-Tuning Daylight with Leds: Sustainable Lighting for Health and Wellbeing. in 2013 ARCC Architectural Research Conference 465-473 (University of North Carolina, 2013). https://www.brikbase.org/sites/default/files/ARCC2013_UNCC_Conference_Proceedings_483.pdf.
  • [7] Ahmad, A. S. et al. A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sust. Energ. Rev. 33, 102-109 (2014). https://doi.org/10.1016/j.rser.2014.01.069
  • [8] Zissis, G., Bertoldi, P. & Serrenho, T. Update on the Status of LED-Lighting World Market Since 2018. (JRC Technical Report). (European Union Publications Office, Luxembourg, 2021) https://data.europa.eu/doi/10.2760/759859.
  • [9] Zhang, W., Eperon, G. E. & Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 1, 1-17 (2016). https://doi.org/10.1038/nenergy.2016.48.
  • [10] Chen, K. et al. Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 49, 411-418 (2018). https://doi.org/10.1016/j.nanoen.2018.05.006.
  • [11] Soe, C. M. M. Emerging three-dimensional and two-dimensional hybrid halide perovskites: from synthesis to thin film properties and solar cell performance. (Northwestern University, 2017). https://doi.org/10.21985/N2Q16N.
  • [12] Qi, W. et al. Inorganic material passivation of defects toward efficient perovskite solar cells. Sci. Bull. 65, 2022-2032 (2020). https://doi.org/10.1016/j.scib.2020.07.017.
  • [13] Assirey, E. A. R. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharm. J. 27, 817-829 (2019). https://doi.org/10.1016/j.jsps.2019.05.003.
  • [14] Aftab, S., Nawaz, T. & Bilal Tahir, M. Recent development in shape memory based perovskite materials for energy conversion and storage applications. Int. J. Energy Res. 45, 20545-20558 (2021). https://doi.org/10.1002/er.7151.
  • [15] Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photo-voltaics: background, status, and future prospects. Chem. Rev. 119, 3036-3103 (2019). https://doi.org/10.1021/acs.chemrev.8b00539.
  • [16] Choithrani, R. Analysis of Thermodynamic and Phononic Properties of Perovskite Manganites. in Magnetic Sensors Principles and Applications (Ed. Kuang, K.) 3-18 (IntechOpen, 2012). https://doi.org/10.5772/33872.
  • [17] Fan, Q. et al. Lead-free halide perovskite nanocrystals: crystal structures, synthesis, stabilities, and optical properties. Angew. Chem. Int. Ed. 59, 1030-1046 (2020). https://doi.org/10.1002/anie.201904862.
  • [18] Duan, Y., Wang, D. Y. & Costa, R. D. Recent progress on synthesis, characterization, and applications of metal halide perovskites@metal oxide. Adv. Funct. Mater. 31, 2104634 (2021). https://doi.org/10.1002/adfm.202104634.
  • [19] Cranford, S. The real power of perovskite progression. Matter 4, 3787-3789 (2021). https://doi.org/10.1016/j.matt.2021.10.028.
  • [20] Katz, E. A. Perovskite: Name puzzle and german-russian odyssey of discovery. Helv. Chim. Acta 103, e2000061 (2020). https://doi.org/10.1002/hlca.202000061.
  • [21] Mitzi, D. B. Introduction: perovskites. Chem. Rev. 119, 3033-3035 (2019). https://doi.org/10.1021/ACS.CHEMREV.8B00800.
  • [22] Lei, Y. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 583, 790-795 (2020). https://doi.org/10.1038/s41586-020-2526-z.
  • [23] Karim, M. A., Biswas, S. K. & Rahman, M. A. Investigation of the Electrical, Optical & Structural Characteristics of Mixed Halide Perovskite Thin Films. in 5th Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. (IC4ME2) 10-14 (IEEE, 2019). https://doi.org/10.1109/IC4ME247184.2019.9036643.
  • [24] Wei, Y., Cheng, Z. & Lin, J. Correction: An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 405 (2019). https://doi.org/10.1039/c8cs00740c.
  • [25] Ng, C. K., Yin, W., Li, H. & Jasieniak, J. J. Scalable synthesis of colloidal CsPbBr3 perovskite nanocrystals with high reaction yields through solvent and ligand engineering. Nanoscale 12, 4859-4867 (2020). https://doi.org/10.1039/C9NR10726F.
  • [26] Xu, D. et al. Enhancing the performance of LARP-synthesized CsPbBr3 nanocrystal LEDs by employing a dual hole injection layer. RSC Adv. 10, 17653-17659 (2020). https://doi.org/10.1039/d0ra02622k.
  • [27] Deng, J., Xun, J. & He, R. Facile and rapid synthesis of high performance perovskite nanocrystals CsPb(X/Br)3 (X = Cl, I) at room temperature. Opt. Mater. 99, 109528 (2020). https://doi.org/10.1016/j.optmat.2019.109528.
  • [28] Moure, C. & Peña, O. Recent advances in perovskites: Processing and properties. Prog. Solid State Ch. 43, 123-148 (2015). https://doi.org/10.1016/j.progsolidstchem.2015.09.001.
  • [29] Williams, A. E. et al. Perovskite processing for photovoltaics: a spectro-thermal evaluation. J. Mater. Chem. A 2, 19338-19346 (2014). https://doi.org/10.1039/C4TA04725G.
  • [30] Gao, P., Grätzel, M. & Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448-2463 (2014). https://doi.org/10.1039/C4EE00942H.
  • [31] Zeng, Z. et al. Rare-earth-containing perovskite nanomaterials: Design, synthesis, properties and applications. Chem. Soc. Rev. 49, 1109-1143 (2020). https://doi.org/10.1039/c9cs00330d.
  • [32] Kim, E. B. et al. A review on two-dimensional (2D) and 2D-3D multi-dimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances. J. Photochem. Photobiol. C 48, 100405 (2021). https://doi.org/10.1016/j.jphotochemrev.2021.100405.
  • [33] Shamsi, J., Urban, A. S., Imran, M., De Trizio, L. & Manna, L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifi-cations, and their optical properties. Chem. Rev. 119, 3296-3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644.
  • [34] Ou, Q. et al. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Mater. Sci. 1, 268-287 (2019). https://doi.org/10.1016/j.nanoms.2019.10.004.
  • [35] Mao, W. et al. Controlled growth of monocrystalline organo-lead halide perovskite and its application in photonic devices. Angew. Chem. Int. Ed. 56, 12486-12491 (2017). https://doi.org/10.1002/anie.201703786.
  • [36] Kulkarni, S. A., Mhaisalkar, S. G., Mathews, N. & Boix, P. P. Perovskite nanoparticles: synthesis, properties, and novel applica-tions in photovoltaics and leds. Small Methods 3, 1800231 (2019). https://doi.org/10.1002/smtd.201800231.
  • [37] Falsini, N. et al. Analysis of the Urbach tail in cesium lead halide perovskites. J. Appl. Phys. 131, (2022). https://doi.org/10.1063/5.0076712.
  • [38] Adhyaksa, G. W. P. et al. Carrier diffusion lengths in hybrid perovskites: processing, composition, aging, and surface passivation effects. Chem. Mater. 28, 5259-5263 (2016). https://doi.org/10.1021/acs.chemmater.6b00466.
  • [39] Wu, X., Li, B., Zhu, Z., Chueh, C. & Jen, A. K. Y. Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chem. Soc. Rev. 50, 13090-13128 (2021). https://doi.org/10.1039/d1cs00841b.
  • [40] DeQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683-686 (2015). https://doi.org/10.1126/science.aaa5333.
  • [41] Huang, H. et al. Colloidal lead halide perovskite nanocrystals: Synthesis, optical properties and applications. NPG Asia Mater. 8, e328 (2016). https://doi.org/10.1038/am.2016.167.
  • [42] Chen, W. et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30, 1800855 (2018). https://doi.org/10.1002/adma.201800855.
  • [43] Leyden, M. R., Jiang, Y. & Qi, Y. Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability. J. Mater. Chem. A 4, 13125-13132 (2016). https://doi.org/10.1039/C6TA04267H.
  • [44] Jarernboon, W. et al. The effects of csbr concentration on the inorganic cesium lead bromide perovskite film properties and the performances of carbon-based HTM-free perovskite solar cells. Curr. Appl. Sci. Technol. 22, 1-13 (2021). https://doi.org/10.55003/cast.2022.05.22.003.
  • [45] Rico-Yuson, C. A., Danwittayakul, S., Kumar, S., Hornyak, G. L. & Bora, T. Sequential dip-coating of CsPbBr3 perovskite films in ambient conditions and their photovoltaic performance. J. Mater. Sci. 57, 10285-10298 (2022). https://doi.org/10.1007/s10853-022-07299-1.
  • [46] Cohen, T. A. et al. Direct patterning of perovskite nanocrystals on nanophotonic cavities with electrohydrodynamic inkjet printing. Nano Lett. 22, 5681-5688 (2022). https://doi.org/10.1021/acs.nanolett.2c00473.
  • [47] Hoseinpour, V., Shariatinia, Z. & Mahmoodpour, S. Surface passivation boosted performances of perovskite solar cells assembled under ambient conditions. Opt. Mater. 131, 112746 (2022). https://doi.org/10.1016/j.optmat.2022.112746.
  • [48] Baral, P. et al. Efficient and stable perovskite solar cells based on blade-coated CH3NH3PbI3 thin films fabricated using “green” solvents under ambient conditions. Org. Electron. 116, 106763 (2023). https://doi.org/10.1016/j.orgel.2023.106763.
  • [49] Becerril, L. et al. Water as the only solvent for CsPbCl3 and NIR-emitting CsPbCl3:Yb3+ films by antisolvent-enhanced crystalli-zation in aerosol-assisted chemical vapor deposition. Adv. Mater. Technol. 8, 2201890 (2023). https://doi.org/10.1002/admt.202201890.
  • [50] Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850-853 (2014). https://doi.org/10.1021/ja4109209.
  • [51] Snaith, H. J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372-376 (2018). https://doi.org/10.1038/s41563-018-0071-z.
  • [52] Wang, K. et al. A Nonionic and low-entropic MA(MMA)nPbI3-ink for fast crystallization of perovskite thin films. Joule 4, 615-630 (2020). https://doi.org/10.1016/j.joule.2020.01.004.
  • [53] Leoncini, M. et al. Electronic transport, ionic activation energy and trapping phenomena in a polymer-hybrid halide perovskite composite. J. Sci.-Adv. Mater. Dev. 6, 543-550 (2021). https://doi.org/10.1016/j.jsamd.2021.07.006.
  • [54] Han, X. et al. Lead-free double perovskite Cs2SnX6: facile solution synthesis and excellent stability. Small 15, 1-7 (2019). https://doi.org/10.1002/smll.201901650.
  • [55] Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897-903 (2014). https://doi.org/10.1038/nmat4014.
  • [56] Yuan, Y. et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, 1500615 (2015). https://doi.org/10.1002/aenm.201500615.
  • [57] Yang, L. et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72-108 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.005.
  • [58] Ke, W. & Kanatzidis, M. G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10, 1-4 (2019). https://doi.org/10.1038/s41467-019-08918-3.
  • [59] Lei, H., Hardy, D. & Gao, F. Lead-free double perovskite cs2agbibr6: fundamentals, applications, and perspectives. Adv. Funct. Mater. 31, 2105898 (2021). https://doi.org/10.1002/adfm.202105898.
  • [60] McClure, E. T., Ball, M. R., Windl, W. & Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28, 1348-1354 (2016). https://doi.org/10.1021/acs.chemmater.5b04231.
  • [61] Shao, S. et al. Highly reproducible sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8, 1702019 (2018). https://doi.org/10.1002/aenm.201702019.
  • [62] Cortecchia, D. et al. Lead-free MA2CuClxBr4-x hybrid perovskites. Inorg. Chem. 55, 1044-1052 (2016). https://doi.org/10.1021/acs.inorgchem.5b01896.
  • [63] Cheng, L.-P. et al. Efficient CsPbBr3 Perovskite light-emitting diodes enabled by synergetic morphology control. Adv. Mater. 7, 1-24 (2019). https://doi.org/10.1002/adom.201801534.
  • [64] Konstantakou, M., Perganti, D., Falaras, P. & Stergiopoulos, T. Anti-solvent crystallization strategies for highly efficient perovskite solar cells. Crystals 7, 1-21 (2017). https://doi.org/10.3390/cryst7100291.
  • [65] Tian, J. et al. Inorganic halide perovskite solar cells: progress and challenges. Adv. Energy Mater. 10, 2000183 (2020) . https://doi.org/10.1002/aenm.202000183.
  • [66] Chen, W. et al. Surface reconstruction for stable monolithic all-inorganic perovskite/organic tandem solar cells with over 21% efficiency. Adv. Funct. Mater. 32, 2109321 (2022). https://doi.org/10.1002/ADFM.202109321.
  • [67] Ding, Y. et al. A low-cost hole transport layer enables Cspbi2br single-junction and tandem perovskite solar cells with record efficiencies of 17.8% and 21.4%. Nano Today 46, 101586 (2022). https://doi.org/10.1016/j.nantod.2022.101586.
  • [68] Ananthakumar, S., Kumar, J. R. & Babu, S. M. Cesium lead halide (CsPbX 3 , X = Cl, Br, I) perovskite quantum dots-synthesis, properties, and applications: a review of their present status. Proc. SPIE 6, 042001 (2016). https://doi.org/10.1117/1.jpe.6.042001.
  • [69] Hu, Y., Zhang, W., Ye, Y., Zhao, Z. & Liu, C. Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion. ACS Appl. Nano Mater. 3, 850-857 (2020). https://doi.org/10.1021/acsanm.9b02362.
  • [70] Meyns, M. et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion leds. ACS Appl. Mater. Interfaces 8, 19579-19586 (2016). https://doi.org/10.1021/acsami.6b02529.
  • [71] Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745-750 (2017). https://doi.org/10.1126/science.aam7093.
  • [72] Liao, H. et al. A general strategy for in situ growth of all-inorganic CsPbX3 (X = Br, I, and Cl) perovskite nanocrystals in polymer fibers toward significantly enhanced water/thermal stabilities. Adv. Opt. Mater. 6, 1-8 (2018). https://doi.org/10.1002/adom.201800346.
  • [73] Solari, S. F., Kumar, S., Jagielski, J. & Shih, C. J. Monochromatic LEDs based on perovskite quantum dots: Opportunities and challenges. J. Soc. Inf. Disp. 27, 667-678 (2019). https://doi.org/10.1002/jsid.834.
  • [74] Swarnkar, A. et al. Colloidal CsPbBr3 Perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew. Chem. Int. Ed. 54, 15424-15428 (2015). https://doi.org/10.1002/anie.201508276.
  • [75] Mao, X. et al. First-principles screening of all-inorganic lead-free ABX3 perovskites. J. Phys. Chem. C 122, 7670-7675 (2018). https://doi.org/10.1021/acs.jpcc.8b02448.
  • [76] Shil, S. K. et al. Crystalline all-inorganic lead-free Cs3Sb2I9 perovskite microplates with ultra-fast photoconductive response and robust thermal stability. Nano Res. 14, 4116-4124 (2021). https://doi.org/10.1007/s12274-021-3351-x.
  • [77] Zhou, L., Xu, Y.-F., Chen, B.-X., Kuang, D.-B. & Su, Ch.-Y. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small 14, 1-7 (2018). https://doi.org/10.1002/smll.201703762.
  • [78] Mathies, F., List-Kratochvil, E. J. W. & Unger, E. L. Advances in inkjet-printed metal halide perovskite photovoltaic and optoelectronic devices. Energy Technol. 8, 1900991 (2020). https://doi.org/10.1002/ente.201900991
  • [79] Wang, Y. et al. Ultrastable, highly luminescent organic-inorganic perovskite - polymer composite films. Adv. Mater. 28, 10710-10717 (2016). https://doi.org/10.1002/adma.201603964.
  • [80] Han, T. H. et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019). https://doi.org/10.1038/s41467-019-08455-z.
  • [81] Wang, J. et al. Simple solution-processed approach for nanoscale coverage of perovskite on textured silicon surface enabling highly efficient perovskite/si tandem solar cells. Energy Technol. 9, 2000778 (2021). https://doi.org/10.1002/ente.202000778.
  • [82] Guo, F., Wang, Y. Y., Zhang, J., Wei, X. L. & Mo, Z. H. Cyclodextrin-mediated colloidal synthesis of highly luminescent and stable CsPbBr3perovskite nanocrystals. New J. Chem. 44, 17368-17373 (2020). https://doi.org/10.1039/d0nj03772a.
  • [83] Zhou, Z. K., Mo, Z. H. & Wei, X. L. Higher quantum efficiency and moisture resistance of all-inorganic halide perovskite nanocrystal films: In situ fabricated with cyclodextrin. Chem. Commun. 55, 11916-11919 (2019). https://doi.org/10.1039/c9cc05755b.
  • [84] Qiu, S. et al. Biopolymer passivation for high-performance perovskite solar cells by blade coating. J. Energy Chem. 54, 45-52 (2020). https://doi.org/10.1016/j.jechem.2020.05.040.
  • [85] Bisconti, F. et al. One-step polymer assisted roll-to-roll gravure-printed perovskite solar cells without using anti-solvent bathing. Cell Rep. 2, 100639 (2021). https://doi.org/10.1016/j.xcrp.2021.100639.
  • [86] Giuri, A. et al. Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells. Nano Energy 54, 400-408 (2018). https://doi.org/10.1016/j.nanoen.2018.10.039.
  • [87] Giuri, A. et al. Rheological tunability of perovskite precursor solutions: From spin coating to inkjet printing process. Nanomaterials 9, 582 (2019). https://doi.org/10.3390/nano9040582.
  • [88] Bisconti, F. et al. Polymer-assisted single-step slot-die coating of flexible perovskite solar cells at mild temperature from dimethyl sulfoxide. ChemPlusChem 86, 1442-1450 (2021). https://doi.org/10.1002/cplu.202100251.
  • [89] Giuri, A. et al. Ultra-bright near-infrared perovskite light-emitting diodes with reduced efficiency roll-off. Sci. Rep. 8, 1-8 (2018). https://doi.org/10.1038/s41598-018-33729-9.
  • [90] Zhou, Q. et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photolumi-nescence for display backlights. Adv. Mater. 28, 9163-9168 (2016). https://doi.org/10.1002/adma.201602651.
  • [91] Ma, K., Du, X. Y., Zhang, Y. W. & Chen, S. In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors. J. Mater. Chem. C 5, 9398-9404 (2017). https://doi.org/10.1039/c7tc02847d.
  • [92] Raj, A., Jayakrishnan, R. & Varma, S. J. Polymer encapsulation as an effective method for enhanced stability in perovskite quantum dots. AIP Conf. Proc. 2265, 030148 (2020). https://doi.org/10.1063/5.0017119.
  • [93] Oku, T. et al. Fabrication and characterization of CH 3 NH 3 PbI 3 perovskite solar cells added with polysilanes. Int. J. Photoenergy 2018, 8654963 (2018). https://doi.org/10.1155/2018/8654963.
  • [94] Fairfield, D. J. et al. Structure and chemical stability in perovskite-polymer hybrid photovoltaic materials. J. Mater. Chem. A 7, 1687-1699 (2019). https://doi.org/10.1039/C8TA07545J.
  • [95] Dai, X. et al. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv. Energy Mater. 10, 1903108 (2020). https://doi.org/10.1002/aenm.201903108.
  • [96] Duan, Y., Yin, G.-Z., Wang, D.-Y. & Costa, R. D. In-situ ambient preparation of perovskite-poly(l-lactide acid) phosphors for highly stable and efficient hybrid light-emitting diodes. ACS Appl. Mater. Interfaces 13, 21800-21809 (2021). https://doi.org/10.1021/acsami.1c04025.
  • [97] Xin, Y., Zhao, H. & Zhang, J. Highly stable and luminescent perovskite-polymer composites from a convenient and universal strategy. ACS Appl. Mater. Interfaces 10, 4971-4980 (2018). https://doi.org/10.1021/acsami.7b16442.
  • [98] Yoon, H. C. & Do, Y. R. Stable and efficient green perovskite nanocrystal-polysilazane films for white LEDs using an electrospray deposition process. ACS Appl. Mater. Interfaces 11, 22510-22520 (2019). https://doi.org/10.1021/acsami.9b04164.
  • [99] Zdanowicz, M., Spychaj, T. & Maka, H. Imidazole-based deep eutectic solvents for starch dissolution and plasticization. Carbohydr. Polym. 140, 416-423 (2016). https://doi.org/10.1016/j.carbpol.2015.12.036.
  • [100] Wang, R., Liu, P., Cui, B., Kang, X. & Yu, B. Effects of different treatment methods on properties of potato starch-lauric acid complex and potato starch-based films. Int. J. Biol. Macromol. 124, 34-40 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.207.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df0fa253-2405-4f4c-b920-0895dbb29a24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.