Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study was to investigate hydrodynamic effects on the formation of beach wrack at three locations in the northern Baltic Sea and to quantify the differences between the composition of species found in the beach wrack and in the neighbouring sea. Hydrodynamic measurements and modelling indicated that the beach wrack was mostly of local origin and that it was formed during high sea level and wave events. Comparison of the methods of beach wrack sampling and seabed sampling (diver, underwater video) demonstrated that beach wrack sampling can be considered an alternative tool for describing the species composition of macrovegetation in near-coastal sea areas. Although the hydrodynamic variability is greater in autumn and more biological material is cast ashore, the similarity between the two sampling methods was higher in spring and summer.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
673--695
Opis fizyczny
Bibliogr. 51 poz., mapki, tab., wykr.
Twórcy
autor
- Estonian Marine Institute, University of Tartu, Mäealuse 14, EE–12618 Tallinn, Estonia
autor
- Estonian Marine Institute, University of Tartu, Mäealuse 14, EE–12618 Tallinn, Estonia
autor
- Estonian Marine Institute, University of Tartu, Mäealuse 14, EE–12618 Tallinn, Estonia
autor
- Estonian Marine Institute, University of Tartu, Mäealuse 14, EE–12618 Tallinn, Estonia
autor
- Estonian Marine Institute, University of Tartu, Mäealuse 14, EE–12618 Tallinn, Estonia
Bibliografia
- [1]. Biber P. D., 2007, Hydrodynamic transport of drifting macroalgae through a tidal cut, Estuar. Coast. Shelf Sci., 74 (3), 565-569, http://dx.doi.org/10.1016/j.ecss.2007.04.019
- [2]. Boller M. L., Carrington E., 2006, In situ measurements of hydrodynamic forces imposed on Chondrus crispus Stackhouse, J. Exp. Mar. Biol. Ecol., 337 (2), 159-170, http://dx.doi.org/10.1016/j.jembe.2006.06.011
- [3]. Bučas M., Daunys D., Olenin S., 2009, Recent distribution and stock assessment of the red alga Furcellaria lumbricalis on an exposed Baltic Sea coast: combined use of field survey and modeling methods, Oceanologia, 51 (3), 341-359, http://dx.doi.org/10.5697/oc.51-3.359
- [4]. Clarke K. R., 1993, Non-parametric multivariate analysis of changes in community structure, Aust. J. Ecol., 18 (1), 117-143, http://dx.doi.org/10.1111/j.1442-9993.1993.tb00438.x
- [5]. Clarke K. R., Corley R. N., 2006, Primer v6. user manual/tutorial, Primer-E, Plymouth, 192 pp.
- [6]. Clarke K. R., Warwick R. M., 2001, Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn., Primer-E, Plymouth, 0/1-17/18 + App.
- [7]. Desrochers R. E., Anand M., 2004, From traditional diversity indices to taxonomic diversity indices, Int. J. Ecol. Environ. Sci., 30, 85-92.
- [8]. Dugan J. E., Hubbard D. M., McCrarcy M. D., Pierson M. O., 2003, The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California, Estuar. Coast. Shelf Sci., 58 (S), 25-40.
- [9]. Filipkowska A., Lubecki L., Szymczak-Żyła M., Kowalewska G., 2009, Factors affecting the occurrence of algae on the Sopot beach (Baltic Sea), Oceanologia, 51 (2), 233-262, http://dx.doi.org/10.5697/oc.51-2.233
- [10]. Gonçalves S. C., Marques J. S., 2011, The effects of season and wrack subsidy on the community functioning of exposed sandy beaches, Estuar. Coast. Shelf Sci., 95 (1), 165-177, http://dx.doi.org/10.1016/j.ecss.2011.08.036
- [11]. Heip C., Engels P., 1974, Comparing species diversity and evenness indices, J. Mar. Biol. Assoc. UK, 54 (03), 559-563, http://dx.doi.org/10.1017/S0025315400022748
- [12]. HELCOM, 2012, Checklist of Baltic Sea macro-species, Baltic Sea Environ. Proc. No. 130.
- [13]. Herkül K., Kotta J., Pärno ja M., 2011, Effect of physical disturbance on the soft sediment benthic macrophyte and invertebrate community in the northern Baltic Sea, Boreal Environ. Res., 16 (Suppl. A), 209-219.
- [14]. Heugel C. A., 1851/52, Bemerkungen und Beiträge zur Flora der Ostseeprovinzen, Corr.-bl. Naturforsch. Ver. zu Riga, 5, 113-152.
- [15]. Heugel C. A., Müller C., 1847, Zur Flora der Ostseeprovinzen, VII. Corr.-bl. Naturforsch. Ver. zu Riga, 2, 48-50, 69-71.
- [16]. Imamura G. J., Thompson R. S., Boehm A. B., Jay J., 2011, Wrack promotes the persistence of fecal indicator bacteria in marine sands and seawater, FEMS Microbiol. Ecol., 77 (1), 40-49, http://dx.doi.org/10.1111/j.1574-6941.2011.01082.x
- [17]. Ince R., Hyndes G. A., Lavery P. S., Vanderklift M. A., 2007, Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat, Estuar. Coast. Shelf Sci., 74 (1-2), 77-86, http://dx.doi.org/10.1016/j.ecss.2007.03.029
- [18]. Jaagus J., Suursaar Ü., 2013, Long-term storminess and sea level variations on the Estonian coast of the Baltic Sea in relation to large-scale atmospheric circulation, Est. J. Earth Sci., 62 (2), 73-92, http://dx.doi.org/10.3176/earth.2013.07
- [19]. Jędrzejczak M. F., 2002a, Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part I. Driftline effects of fragmented detritivory, leaching and decay rates, Oceanologia, 44 (2), 273-286.
- [20]. Jędrzejczak M. F., 2002b, Spatio-temporal decay 'hot spots' of stranded wrack in a Baltic sandy coastal system. Part I. Comparative study of the pattern: 1 type wrack vs 3 beach sites, Oceanologia, 44 (4), 491-512.
- [21]. Kautsky H., van der Maarel E., 1990, Multivariate approaches to the variation in phytobenthic communities and environmental vectors in the Baltic Sea, Mar. Ecol.-Prog. Ser., 60 (1-2), 169-184, http://dx.doi.org/10.3354/meps060169
- [22]. Kautsky H., Martin G., Mäkinen A., Borgiel M., Vahteri P., Rissanen J., 1999, Structure of phytobenthic and associated animal communities in the Gulf of Riga, Hydrobiologia, 393 (0), 191-200, http://dx.doi.org/10.1023/A:1003510105274
- [23]. Kersen P., 2012, First findings of the benthic macroalgae Vaucheria cf. dichotoma (Xanthophyceae) and Punctaria tenuissima (Phaeophyceae) in Estonian coastal waters, Est. J. Ecol., 61 (2), 135-147, http://dx.doi.org/10.3176/eco.2012.2.05
- [24]. Kersen P., Martin G., 2007, Annual biomass loss of the loose-lying red algal community via acroalgal beach casts in the Väinameri area, NE Baltic Sea, Proc. Est. Acad. Sci. Biol. Ecol., 56 (4), 278-289.
- [25]. Kirkman H., Kendrick G. A., 1997, Ecological significance and commercial harvesting of drifting and beachcast macroalgae and seagrasses in Australia: a review, J. Appl. Phycol., 9 (4), 311-326, http://dx.doi.org/10.1023/A:1007965506873
- [26]. Kotwicki L., Węsławski J. M., Raczyńska A., Kupiec A., 2005, Deposition of large organic particles (macrodetritus) in a sandy beach system (Puck Bay, Baltic Sea), Oceanologia, 47 (2), 181-199.
- [27]. Kotta J., Paalme T., Martin G., Mäkinen A., 2000, Major changes in macroalgae community composition affect the food and habitat preference of Idotea baltica, Int. Rev. Hydrobiol., 85 (5-6), 697-705.
- [28]. Kovtun A., Torn K., Martin G., Kullas T., Kotta J., Suursaar Ü., 2011, Influence of abiotic environmental conditions on spatial distribution of charophytes in the coastal waters of West Estonian Archipelago, Baltic Sea, J. Coastal Res., Spec. Iss. 64 (1), 412-416.
- [29]. Lastra M., de La Huz R., Sanchez-Mata A. G., Rodil I. F., Aerts K., Beloso S., Lopez J., 2006, Ecology of exposed sandy beaches in northern Spain: environmental factors controlling macrofauna communities, J. Sea Res., 55 (2), 128-140, http://dx.doi.org/10.1016/j.seares.2005.09.001
- [30]. Lepik E., 1925, Põisadru (Fucus vesiculosus L.) ja selle majanduslik tähtsus, Agronoomia, 5 (4), 135-144.
- [31]. Lobban C. S., Harrison P. J., 1994, Seaweed ecology and physiology, Cam- bridge Univ. Press, Cambridge, 366 pp., http://dx.doi.org/10.1017/CBO9780511626210
- [32]. Magurran A. E., 1988, Ecological diversity and its measurement, Princeton Univ. Press, Princeton, http://dx.doi.org/10.1007/978-94-015-7358-0
- [33]. Martin G., 1999, Distribution of phytobenthos biomass in the Gulf of Riga (1984-1991), Hydrobiologia, 393, 181-190, http://dx.doi.org/10.1023/A:1003517427506
- [34]. Martin G., 2000, Phytobenthic communities of the Gulf of Riga and the Inner Sea of the West-Estonian Archipelago, Tartu Univ. Press, Tartu.
- [35]. Martin G., Torn K., Kotta J., Orav-Kotta H., 2003, Estonian marine phytobenthos monitoring programme; preliminary results and future perspectives, Proc. Est. Acad. Sci. Biol. Ecol., 52 (2), 112-124.
- [36]. Möller T., Martin G., 2007, The distribution of the eelgrass Zostera marina in the coastal waters of Estonia, NE Baltic Sea, Proc. Est. Acad. Sci. Biol. Ecol., 56 (4), 270-277.
- [37]. Müller C., 1852/53, Versuch eines Vegetationsgemäldes von Oesel, Corr.-bl. Naturforsch. Ver. zu Riga, 6, 1-26.
- [38]. Ochieng C. A., Erftemeijer P. L. A., 1999, Accumulation of seagrass beach cast along the Kenyan coast: a quantitative assessment, Aquat. Bot., 65 (1-4), 221-238, http://dx.doi.org/10.1016/S0304-3770(99)00042-X
- [39]. Oldham C. E., Lavery P. S., McMahon K., Pattiaratchi C., Chiffings T. W., 2010, Seagrass wrack dynamics in Geographe Bay, Western Australia, Rep. WA Dept. Transport/Shire of Busselton, 23 pp., [http://www.transport.wa.gov.au/mediaFiles/marine/MAC-R-PortGeo-SeagrassWrack-Synopsis.pdf].
- [40]. Orr M., Zimmer M., Jelinski D. E., Mews M., 2005, Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy, Ecology, 86 (6), 1496-1507, http://dx.doi.org/10.1890/04-1486
- [41]. Pennings S. C., Carefoot T. H., Zimmer M., Danko J. P., Ziegler A., 2000, Feeding preferences of supralittoral isopods and amphipods, Can. J. Zoolog., 78 (11), 1918-1929, http://dx.doi.org/10.1139/z00-143
- [42]. Pullisaar T., 1961, Märkmeid Pärnu lahe p~ohjataimestiku kohta, ENSV TA Toimetised. Biol., 10, 340-346.
- [43]. StatSoft Inc., 2012, Electronic statistics textbook, Tulsa. Suursaar Ü., 2013, Locally calibrated wave hindcasts in the Estonian coastal sea in 1966-2011, Est. J. Earth Sci., 62 (2), 42-56, http://dx.doi.org/10.3176/earth.2013.05
- [44]. Suursaar Ü., Kullas T., 2006, Influence of wind climate changes on the mean sea level and current regime in the coastal waters of west Estonia, Baltic Sea, Oceanologia, 48 (3), 361-383.
- [45]. Suursaar Ü., Kullas T., Otsmann M., Saaremäe I., Kuik J., Merilain M., 2006, Hurricane Gudrun and modelling its hydrodynamic consequences in the Estonian coastal waters, Boreal Environ. Res., 11 (2), 143-159.
- [46]. Suursaar Ü., Kullas T., Aps R., 2012, Currents and waves in the northern Gulf of Riga: measurement and long-term hindcast, Oceanologia, 54 (3), 421-447, http://dx.doi.org/10.5697/oc.54-3.421
- [47]. Torn K., Martin G., 2011, Assessment method for the ecological status of Estonian coastal waters based on submerged aquatic vegetation, [in:] Sustainable development and planning, C. A. Brebbia & E. Beriatos (eds.), V. WIT Press, Southampton, 443-452, http://dx.doi.org/10.2495/SDP110371
- [48]. Torn K., Krause-Jensen D., Martin G., 2006, Present and past depth distribution of bladderwrack (Fucus vesiculosus) in the Baltic Sea, Aquat. Bot., 84 (1), 53-62, http://dx.doi.org/10.1016/j.aquabot.2005.07.011
- [49]. Viikmäe B., Soomere T., 2014, Spatial pattern of current-driven hits to the nearshore from a major marine fairway in the Gulf of Finland, J. Marine Syst., 129, 106-117, http://dx.doi.org/10.1016/j.jmarsys.2013.06.014
- [50]. von Luce J. W. L., 1823, Topographische Nachrichten von der Insel Oesel, in medicinischer und ökonomischer Hinsicht Riga, W. F. Häcker, 369-373.
- [51]. Warwick R., Light J., 2002, Death assemblages of molluscs on St Martin's Flats, Isles of Scilly: a surrogate for regional biodiversity?, Biodivers. Conserv., 11 (1), 99-112, http://dx.doi.org/10.1023/A:1014094829984
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df0e8ea7-1627-4055-b9f8-b6179c8cd8d4