Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wieloskładnikowa sorpcja oraz utylizacja odpadu stałego do jednoczesnego usuwania barwnika zasadowego i metalu ciężkiego z układu wodnego
Języki publikacji
Abstrakty
The presented work introduces a simple modification of coal fly ash (FA) with 30% solution of H2O2, used as a new efficient sorbent for the removal of organic dye crystal violet (CV) in the presence of Cu(II) ions in single- and bi-component systems Cu(II)-CV. FT-IR, TG, SEM-EDS, and XRD suggested that the mechanism of Cu(II) and CV sorption onto FA-H2O2 includes ion-exchange and surface adsorption process. Comparing the values of the reduced chi-square test (χ2/DoF) and the determination coefficient R2 obtained for CV of the considered isotherms, the fitting degree follows the sequence: Jovanović > Langmuir > Elovich > Freundlich > Redlich-Peterson (R-P) > Tóth > Halsey > BET. Sorption of Cu(II) ions in a single system by means of FA-H2O2 was well fitted by the Langmuir and R-P model. The studies of equilibrium in a bi-component system by means of extended Langmuir (EL), extended Langmuir-Freundlich (ELF), and Jain-Snoeyink (JS) models were analysed. The estimation of parameters of sorption isotherms in a bi-component system Cu(II)-CV has shown that the best of fit calculated values of experimental data for both sorbates have been the EL model and the JS model, but only in the case of a CV dye. The sorption kinetic of Cu(II) and CV onto FA-H2O2 was discussed by means of the PFO, PSO, and intra-particle diffusion models.
W pracy przedstawiono prostą modyfikację popiołu lotnego węglowego (FA) za pomocą 30% roztworu H2O2 oraz wykorzystanie go jako nowego skutecznego sorbentu do usuwania barwnika organicznego fioletu krystalicznego (CV) w obecności jonów Cu(II) w układzie jedno- i dwuskładnikowym Cu(II)-CV. Badania FT-IR, TG, SEM-EDS i XRD potwierdziły, że mechanizm sorpcji Cu(II) i CV na FA- H2O2 obejmuje proces wymiany jonowej i adsorpcji powierzchniowej. Porównując wartości zredukowanego testu chi-kwadrat (χ2/DoF) i współczynnika determinacji R2 uzyskane dla rozpatrywanych izoterm CV, stopień dopasowania odpowiednich modeli odpowiada następującej kolejności: Jovanović > Langmuir > Elovich > Freundlich > Redlich-Peterson (RP) > Tóth > Halsey > BET. Sorpcja jonów Cu(II) w układzie jednosładnikowym za pomocą FA-H2O2 została dobrze opisana za pomocą modelu Langmuira i R-P. Przeanalizowano badania równowagi w układzie dwuskładnikowym wykorzystując rozszerzony model Langmuira (EL), rozszerzony Langmuira-Freundlicha (ELF) i Jain-Snoeyinka (JS). Estymacja parametrów izoterm sorpcji w układzie binarnym Cu(II)-CV wykazała, że najlepsze dopasowanie wartości obliczonych do danych doświadczalnych dla obu sorbatów posiada model EL oraz model JS, ale tylko w przypadku barwnika CV. Kinetykę sorpcji Cu(II) i CV na FA-H2O2 przeanalizowano za pomocą modeli PFO, PSO i dyfuzji wewnątrzziarnowej.
Czasopismo
Rocznik
Tom
Strony
62--75
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- Department of Inorganic and Analytical Chemistry, University of Technology, Rzeszów, Poland
autor
- Department of Inorganic and Analytical Chemistry, University of Technology, Rzeszów, Poland
autor
- Department of Inorganic and Analytical Chemistry, University of Technology, Rzeszów, Poland
Bibliografia
- 1. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash, Progress Energy Combustion, 36, pp. 327363, DOI: 10.1016/j.pecs.2009.11.003
- 2. Al-Asheh, S., Banat, F., Al-Omari, R. & Duvnjak, Z. (2000). Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data, Chemosphere, 41, pp. 659-665, DOI: 10.1016/S0045-6535(99)00497-X.
- 3. Alver, E. & Metin, A.Ü. (2012). Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies, Chemical Engineering Journal, 200-202, pp. 59-67, DOI: 10.1016/j.cej.2012.06.038.
- 4. Amodu, O.S., Ojumu, T.V., Ntwampe, S.K. & Ayanda, O.S. (2015). Rapid Adsorption of Crystal Violet onto Magnetic Zeolite Synthesized from Fly Ash and Magnetite Nanoparticles, Journal of Encapsulation and Adsorption Sciences, 5, pp. 191203, DOI: 10.4236/jeas.2015.54016.
- 5. An, C. & Huang, G. (2012). Stepwise adsorption of phenanthrene at the fly ash-water interface as affected by solution chemistry: Experimental and modeling studies, Environmental Science & Technology, 46, pp. 12742-12750, DOI: 10.1021/es3035158.
- 6. Anirudhan, T.S. & Ramachandran M. (2015). Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm, Process Safety and Environmental Protection, 95, pp. 215-225, DOI: 10.1016/j.psep.2015.03.003.
- 7. Aslam, Z., Shawabkeh, R.A., Hussein, I.A., Al-Baghli, N. & Eic, M. (2015). Synthesis of activated carbon from oil fly ash for removal of H2S from gas stream, Applied Surface Science, 327, pp. 107-115, DOI: 10.1016/j.apsusc.2014.11.152.
- 8. Bedin, K.C., Martins, A.C., Cazetta, A.L., Pezoti, O. & Almeida, V.C. (2016). KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal, Chemical Engineering Journal, 286, pp. 476-484, DOI: 10.1016/j.cej.2015.10.099.
- 9. Cabal, B., Ania, C.O., Parra, J.B. & Pis, J.J. (2009). Kinetics of naphthalene adsorption on an activated carbon: Comparison between aqueous and organic media, Chemosphere, 76, pp. 433-438, DOI: 10.1016/j.chemosphere.2009.04.002.
- 10. Canpolat, F., Yilmaz, K., Kose, M.M., Sumer, M. & Yurdusev, M.A. (2004). Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production, Cement and Concrete Research, 34, pp. 731-735, DOI: 10.1016/S0008-8846(03)00063-2.
- 11. Dai, S., Ren, D., Chou, C.-L., Finkelman, R.B., Seredin, V.V. & Zhou, Y. (2012). Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization, International Journal of Coal Geology, 94, pp. 3-21, DOI: 10.1016/j.coal.2011.02.003.
- 12. Deng, H. & Yu, X. (2012). Adsorption of fluoride, arsenate and phosphate in aqueous solution by cerium impregnated fibrous protein, Chemical Engineering Journal, 184, pp. 205-212, DOI: 10.1016/j.cej.2012.01.031.
- 13. Foo, K.Y. & Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 156, 2-10, DOI: 10.1016/j.cej.2009.09.013.
- 14. Franus, W., Wiatros-Motyka, M.M. & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements, Environmental Science and Pollution Research, 22, pp. 9464-9474, DOI 10.1007/s11356-015-4111-9
- 15. Gholitabar, S. & Tahermansouri, H. (2017). Kinetic and multi--parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound, Carbon Letters, 22, pp. 14-24, DOI: 10.5714/CL.2017.22.014.
- 16. Gupta, V.K. & Suhas (2009). Application of low-cost adsorbents for dye removal e a review, Journal of Environmental Management, 90, pp. 2313-2342, DOI: 10.1016/j.jenvman.2008.11.017.
- 17. Hamdaouia, O. & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters, Journal of Hazardous Materials, 147, pp. 381-394, DOI: 10.1016/j.jhazmat.2007.01.021.
- 18. Ho, Y.S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59, pp. 171-177, DOI: 10.1023/B:SCIE.0000013305.99473.cf.
- 19. Ho, Y.S. (2006) Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods, Water Research, 40, pp. 119-125. DOI: 10.1016/j.watres.2005.10.040.
- 20. Ho, Y.S., Porter, J.F. & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems, Water, Air, & Soil Pollution, 141, pp. 1-33, DOI: 10.1023/A:1021304828010.
- 21. Jiao, F., Wijaya, N., Zhang, L., Ninomiya, Y. & Hocking, R. (2011). Synchrotron-Based XANES Speciation of Chromium in the Oxy-Fuel Fly Ash Collected from Lab-Scale Drop-Tube Furnace, Environmental Science & Technology, 45, pp. 6640-6646, DOI: 10.1021/es200545e.
- 22. Ghanbari Pakdehi, S. & Alipour, M. (2013). Adsorption of Cr(III) and Mg(II) from Hydrogen Peroxide Aqueous Solution by Amberlite IR-120 Synthetic Resin, Iranian Journal of Chemistry and Chemical Engineering, 32, pp. 49-55. www.SID.ir.
- 23. Liu, X. & Zhang, L. (2015) Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies, Powder Technology, 277, pp. 112-119, DOI: 10.1016/j.powtec.2015.02.055.
- 24. Luo J, Shen H., Markström, H., Wang, Z. & Niu, Q. (2011). Removal of Cu2+ from Aqueous Solution using Fly Ash. Journal of Minerals and Materials Characterization and Engenering, 10, pp. 561-571, DOI: 10.4236/jmmce.2011.106043.
- 25. Medellin-Castillo, N.A., Padilla-Ortega, E., Regules-Martínez, M.C., Leyva-Ramos, R., Ocampo-Perez, R. & Carranza-Alvarez, C. (2017). Single and competitive adsorption of Cd(II) and Pb(II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste, Sustainable Environment Research, 27, pp. 61-69, DOI: 10.1016/j.serj.2017.01.004.
- 26. Mozgawa, W., Jastrzębski, W. & Handke, M. (2006). Cationterminated structural clusters as a model for the interpretation of zeolite vibrational spectra, Journal of Molecular Structure, 792-793, pp. 163-169, DOI: 10.1016/j.molstruc.2005.12.056.
- 27. Noroozi, B. & Sorial, G.A. (2013). Applicable models for multi-component adsorption of dyes: A review, Journal of Environmental Sciences, 25, 419-429, DOI: 10.1016/S1001-0742(12)60194-6.
- 28. Padilla-Ortega, E., Leyva-Ramos, R. & Flores-Cano, J.V. (2013). Binary adsorption of heavy metals from aqueous solution onto natural clays, Chemical Engineering Journal, 225, pp. 535-546, DOI: 10.1016/j.cej.2013.04.011.
- 29. Polowczyk, I., Ulatowska, J., Koźlecki, T., Bastrzyk, A. & Sawiński, W. (2013). Studies on removal of boron from aqueous solution by fly ash agglomerates, Desalination, 310, pp. 93-101, DOI: 10.1016/j.desal.2012.09.033.
- 30. Ruhl, L., Vengosh, A., Dwyer, G.S., Hsu-Kim, H. & Deonarine, A. (2010). Environmental Impacts of the Coal Ash Spill in Kingston. Tennessee: An 18-Month Survey, Environmental Science & Technology, 44, pp. 9272-9278, DOI: 10.1021/es1026739.
- 31. Sarma, G.K., Gupta, S.S. & Bhattacharyya, K.G. (2016). Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension, Journal of Environmental Management, 171, pp. 1-10, DOI: 10.1016/j.jenvman.2016.01.038.
- 32. Sočo, E. & Kalembkiewicz, J. (2015). Removal of copper(II) and zinc(II) ions from aqueous solution by chemical treatment of coal fly ash, Croatica Chemica Acta, 88, pp. 267-279, DOI: 10.5562/cca2646.
- 33. Styszko-Grochowiak, K., Gołaś, J., Jankowski, H. & Koziński, S. (2004). Characterization of the coal fly ash for the purpose of improvement of industrial on-line measurement of unburned carbon content, Fuel, 83, pp. 1847-1853, DOI:10.1016/j.fuel.2004.03.005.
- 34. Szala, B., Bajda, T., Matusik, J., Zięba, K. & Kijak, B. (2015). BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA, Microporous and Mesoporous Materials, 202, pp. 115-123, DOI: 10.1016/j.micromeso.2014.09.033.
- 35. Vieira, R.S., Guibal, E., Silva, E.A. & Beppu, M.M. (2007). Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes, Adsorption, 13, pp. 603-611, DOI 10.1007/s10450-007-9050-4.
- 36. Wang, L. (2012). Application of activated carbon derived from ‘waste’ bamboo culms for the adsorption of azo disperse dye: Kinetic, equilibrium and thermodynamic studies, Journal of Environmental Management, 102, pp. 79-87, DOI: 10.1016/j.jenvman.2012.02.019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df0e05dd-c873-4296-aa28-c33aa280d8e0