PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automation of grant application writing with the use of ChatGPT

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper examines the integration of generative AI, specifically ChatGPT, into grant application writing, evaluating its impact on efficiency, quality, and equity in research funding. The study aims to address systemic challenges in grant writing, such as high time investment, low success rates, and inherent biases against underrepresented groups. Design/methodology/approach: The research analyzes the development and submission of four grant proposals to public and private funding bodies in the U.S. and EU. ChatGPT was employed to automate key components of the process, including generating proposal structures, drafting content, and formatting team qualifications. The outcomes were compared in terms of time efficiency, success rates, and the quality of applications. Findings: The use of ChatGPT reduced the average grant preparation time from 30-50 days to 3-5 days while achieving a 50% success rate, significantly exceeding typical success rates of 10-20%. The findings highlight ChatGPT’s potential to enhance the inclusivity of funding processes by mitigating biases and lowering entry barriers for junior faculty and underrepresented groups. Research limitations/implications: The study is limited by the small sample size of four grant applications and the inherent variability of AI-generated outputs. Future research should explore scalability, reproducibility, and the ethical implications of AI use in academic and professional settings. Practical implications: The adoption of AI in grant writing can streamline the application process, allowing researchers to focus on substantive project development. Funding bodies are encouraged to adapt evaluation standards to distinguish between human-authored and AI-generated content, ensuring fair assessments. Social implications: By reducing biases and increasing accessibility, AI-driven grant writing can democratize research funding opportunities, fostering greater equity and diversity in academic and scientific communities. Originality/value: This study provides the first empirical evaluation of ChatGPT’s application in grant writing, offering insights into its transformative potential for academia, policy, and research funding practices. It is valuable to researchers, funding organizations, and policymakers seeking to leverage AI for more inclusive and efficient grant processes.
Rocznik
Tom
Strony
493--515
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Department of Business and International Relations, Vistula University, Warsaw, Poland
  • European Humanities University, Vilnius, Lithuania
Bibliografia
  • 1. Abdullahi, A. (2023). Generative AI for Business: Top 7 Productivity Boosts. eWEEK. https://www.eweek.com/artificial-intelligence/generative-ai-for-business/.
  • 2. Adhvaryu, A., Bailey, A., Breitling, F., Fenton, T., Koike, J. (2023). The Path to Generative AI Value Begins with a Workforce Diagnostic. BCG Global. https://www.bcg.com/publications/2023/assessing-the-impact-of-generative-ai-onworkforce-productivity.
  • 3. Alavi, M., Westerman, G. (2023). How Generative AI Will Transform Knowledge Work. Harvard Business Review. https://hbr.org/2023/11/how-generative-ai-will-transformknowledge-work
  • 4. Arnold, A., Cafer, A., Green, J., Haines, S., Mann, G., Rosenthal, M. (2021). Perspective: Promoting and fostering multidisciplinary research in universities. Research Policy, 50, 104334. https://doi.org/10.1016/j.respol.(2021).104334
  • 5. Bagaka's, J.G., Bransteter, I., Rispinto, S., Badillo, N. (2015). Exploring Student Success in a Doctoral Program: The Power of Mentorship and Research Engagement. International Journal of Doctoral Studies, 10, 323-342. http://ijds.org/Volume10/IJDSv10p323- 342Bagaka1713.pdf
  • 6. Bianchini, S., Müller, M., Pelletier, P. (2022). Artificial intelligence in science: An emerging general method of invention. Research Policy, 51, 104604. https://doi.org/10.1016/j.respol.(2022).104604
  • 7. Birhane, A., Kasirzadeh, A., Leslie, D., Wachter, S. (2023). Science in the age of large language models. Nature Reviews Physics, 5, 277-280. https://doi.org/10.1038/s42254-023- 00581-4
  • 8. Candelon, F., Krayer, L., Rajendran, S., Martinez, D.Z. (2023). How People Can Create- and Destroy-Value with Generative AI. BCG Global. https://www.bcg.com/ publications/2023/how-people-create-and-destroy-value-with-gen-ai.
  • 9. Chemaya, N., Martin, D. (2024). Perceptions and Detection of AI Use in Manuscript Preparation for Academic Journals. arXiv Preprints, arXiv:2311.14720. https://doi.org/10.48550/arXiv.2311.14720
  • 10. Chiarello, F., Giordano, V., Spada, I., Barandoni, S. (2024). Future applications of generative large language models: A data-driven case study on ChatGPT. Technovation, 133. https://doi.org/10.1016/j.technovation.2024.103002
  • 11. Chui, M., Hazan, E., Roberts, R., Singla, A., Smaje, K., Sukharevsky, A., Yee, L., Zemmel, R. (2023). The economic potential of generative AI: The next productivity frontier. McKinsey Digital. https://www.mckinsey.com/capabilities/mckinsey-digital/ourinsights/the-economic-potential-of-generative-ai-the-next-productivityfrontier#introduction
  • 12. Cong-Lem, N., Soyoof, A., Tsering, D. (2024). A Systematic Review of the Limitations and Associated Opportunities of ChatGPT. International Journal of Human-Computer Interaction, 1-16. https://doi.org/10.1080/10447318.2024.2344142
  • 13. Else, H. (2023). Abstracts written by ChatGPT fool scientists. Nature, 613, 423-423. https://doi.org/10.1038/d41586-023-00056-7
  • 14. Freel, S.A., Smith, P.C., Burns, E.N., Downer, J.B., Brown, A.J., Dewhirst, M.W. (2017). Multidisciplinary Mentoring Programs to Enhance Junior Faculty Research Grant Success. Academic Medicine, 92, 1410. https://doi.org/10.1097/ACM.0000000000001620
  • 15. Ganjavi, C., Eppler, M.B., Pekcan, A., Biedermann, B., Abreu, A., Collins, G.S., Gill, I.S., Cacciamani, G.E. (2023). Bibliometric Analysis of Publisher and Journal Instructions to Authors on Generative-AI in Academic and Scientific Publishing. arXiv Preprints arXiv:2307.11918. https://doi.org/10.48550/arXiv.2307.11918
  • 16. Garrido-Merchan, E.C. (2023). Best uses of ChatGPT and Generative AI for computer science research. arXiv Preprints arXiv:2311.11175. https://doi.org/10.48550/ arXiv.2311.11175
  • 17. Glickman, M., Zhang, Y. (2024). AI and Generative AI for Research Discovery and Summarization. arXiv Preprints arXiv:2401.06795. https://doi.org/10.48550/ arXiv.2401.06795
  • 18. Goos, M., Savona, M. (2024). The governance of artificial intelligence: Harnessing opportunities and mitigating challenges. Research Policy, 53, 104928. https://doi.org/10.1016/j.respol.(2023).104928
  • 19. Goto, M. (2023). Anticipatory innovation of professional services: The case of auditing and artificial intelligence. Research Policy, 52, 104828. https://doi.org/10.1016/ j.respol.(2023).104828
  • 20. Graef, I., Prüfer, J. (2021). Governance of data sharing: A law & economics proposal. Research Policy, 50, 104330. https://doi.org/10.1016/j.respol.(2021).104330
  • 21. Grassini, S., Koivisto, M. (2024). Artificial Creativity? Evaluating AI Against Human Performance in Creative Interpretation of Visual Stimuli. International Journal of Human- Computer Interaction, 1-12. https://doi.org/10.1080/10447318.2024.2345430
  • 22. Herbert, D.L., Barnett, A.G., Clarke, P., Graves, N. (2013). On the time spent preparing grant proposals: an observational study of Australian researchers. BMJ Open, 3, e002800. https://doi.org/10.1136/bmjopen-2013-002800
  • 23. Jackevicius, C.A., Le, J., Nazer, L., Hess, K., Wang, J., Law, A.V. (2014). A Formal Mentorship Program for Faculty Development. American Journal of Pharmaceutical Education, 78. https://doi.org/10.5688/ajpe785100
  • 24. Jain, R., Jain, A. (2023). Generative AI in Writing Research Papers: A New Type of Algorithmic Bias and Uncertainty in Scholarly Work. arXiv Preprints, arXiv:2312.10057. https://doi.org/10.48550/arXiv.2312.10057
  • 25. Kurlinkus, W. (2023). Teaching ChatGPT for Grant Writing: An English Department Senior Capstone. Writers: Craft & Context, 4, 115-124. https://doi.org/10.15763/issn.2688- 9595.(2023).4.1.115-124
  • 26. Lauer, M.S., Roychowdhury, D. (2021). Inequalities in the distribution of National Institutes of Health research project grant funding. eLife, 10, e71712. https://doi.org/10.7554/eLife.71712
  • 27. Lerchenmueller, M.J., Sorenson, O. (2018). The gender gap in early career transitions in the life sciences. Research Policy, 47, 1007-1017. https://doi.org/10.1016/j.respol.2018.02.009
  • 28. Marr, B. (2023). Boost Your Productivity with Generative AI. Harvard Business Review. https://hbr.org/2023/06/boost-your-productivity-with-generative-ai
  • 29. Morris, M.R. (2023). Scientists' Perspectives on the Potential for Generative AI in their Fields. ArXiv Preprints, arXiv:2304.01420. https://doi.org/10.48550/arXiv.2304.01420
  • 30. Noy, S., Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381, 187-192. https://doi.org/10.1126/science.adh2586
  • 31. Raees, M., Meijerink, I., Lykourentzou, I., Khan, V-J. (2024). From explainable to interactive AI: A literature review on current trends in human-AI interaction. International Journal of Human - Computer Studies, 189. https://doi.org/10.1016/j.ijhcs.2024.103301
  • 32. Rana, N.P., Pillai, R., Sivathanu, B., Malik, N. (2024). Assessing the nexus of Generative AI adoption, ethical considerations and organizational performance. Technovation, 135. https://doi.org/10.1016/j.technovation.2024.103064
  • 33. Roberts, D.L., Candi, M. (2024). Artificial intelligence and innovation management: Charting the evolving landscape. Technovation, 136. https://doi.org/10.1016/ j.technovation.2024.103081
  • 34. Santoro, H. (2021). The daunting but vital world of grant writing. APA Monitor on Psychology. https://www.apa.org/monitor/2021/11/career-grant-writing
  • 35. Savchuk, K. (2023). Generative AI Can Boost Productivity Without Replacing Workers. Stanford Business Insights. https://www.gsb.stanford.edu/insights/generative-ai-can-boostproductivity-without-replacing-workers
  • 36. Schembri-Wismayer, P., Cuschieri, S., Grech, V. (2018). WASP (Write a Scientific Paper): Writing a Research Grant - 1, Applying for Funding. Early Human Development, 127, 106- 108. https://doi.org/10.1016/j.earlhumdev.2018.07.013
  • 37. Schweiger, G. (2023). Can't We Do Better? A cost-benefit analysis of proposal writing in a competitive funding environment. PLOS ONE, 18, e0282320. https://doi.org/10.1371/journal.pone.0282320
  • 38. Shimek, C. (2023). UM Research: AI Tests Into Top 1% for Original Creative Thinking. University of Montata News. https://www.umt.edu/news/2023/07/070523test.php, 17.02.2024.
  • 39. Sommers, M. (2023). How generative AI can boost highly skilled workers' productivity. MIT Sloan Ideas Made to Matter. https://mitsloan.mit.edu/ideas-made-to-matter/howgenerative-ai-can-boost-highly-skilled-workers-productivity
  • 40. Spence, J.P., Buddenbaum, J.L., Bice, P.J., Welch, J.L., Carroll, A.E. (2018). Independent investigator incubator (I3): a comprehensive mentorship program to jumpstart productive research careers for junior faculty. BMC Medical Education, 18, 186. https://doi.org/10.1186/s12909-018-1290-3
  • 41. Steel, P., Fariborzi, H. (2023). Using ChatGPT for Automated Grant Writing - On-Demand. Instats. https://instats.org/seminar/using-chatgpt-for-automated-grant-writin3
  • 42. Stock-Homburg, R. (2023). Research Note the Tightrope between Human and Ai-Generated Innovation: A Turing Test. SSRN. https://doi.org/10.2139/ssrn.4613427
  • 43. Stokel-Walker, C. (2022). AI bot ChatGPT writes smart essays - should professors worry? Nature. https://doi.org/10.1038/d41586-022-04397-7
  • 44. von Hippel, T., von Hippel, C. (2015). To apply or not to apply: a survey analysis of grant writing costs and benefits. PLoS One, 10, e0118494. https://doi.org/10.1371/ journal.pone.0118494
  • 45. Wang, J., Lee, Y.-N., Walsh, J.P. (2018). Funding model and creativity in science: Competitive versus block funding and status contingency effects. Research Policy, 47, 1070-1083. https://doi.org/10.1016/j.respol.2018.03.014
  • 46. Zhou, S., Chai, S., Freeman, R.B. (2024). Gender homophily: In-group citation preferences and the gender disadvantage. Research Policy, 53, 104895. https://doi.org/10.1016/ j.respol.(2023).104895
  • 47. Zhou, Z., Li, J., Zhang, Z., Yu, J., Duh, H. (2024). Examining How the Large Language Models Impact the Conceptual Design with Human Designers: A Comparative Case Study. International Journal of Human-Computer Interaction, 1-17. https://doi.org/10.1080/10447318.2024.2370635
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df03a6a0-c71b-480a-9f85-d4eaffc980be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.