PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A smart review on the gas transportation model of coalbed methane gas based on the optimized pipeline network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coalbed methane is extracted from the adsorbed state in coal seams with lower pressure and production rate. In previous studies, researchers only focused on the methods that were developed for making a relationship between the underground production rate and surface flow rate without any type of optimization procedure. In this study, the main purpose is to do a review on finding out of surface layout plan to optimize the maximum gas flow rate by developing an improved pipeline network. The more the optimization of the layout plan for designing pipeline network, the lower the amount of investment need to provide. Here, a mathematical model is proposed for the gas transportation based on the hydraulic and thermodynamic calculations of the pipeline network. Not only that, but also the filtration mechanism of depressurization and desorption for the gas flow through pipe section are evaluated here. After that, the pressure drop and pipeline efficiency are explored to find out the best design of pipeline network from the observed results. Finally, based on this study, many uncertainties can be reduced associated with the installation of pipeline network for gas transportation.
Rocznik
Strony
169--175
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Chittagong University of Engineering and Technology, Faculty of Mechanical Engineering, Department of Petroleum and Mining Engineering, Chittagong, Bangladesh
  • Chittagong University of Engineering and Technology, Faculty of Mechanical Engineering, Department of Petroleum and Mining Engineering, Chittagong, Bangladesh
  • Chittagong University of Engineering and Technology, Faculty of Mechanical Engineering, Department of Petroleum and Mining Engineering, Chittagong, Bangladesh
Bibliografia
  • 1. Li J., Yang J. (2011). Brief discussion on development of coal seam gas industry in China. SCI-TECH Innov Prod., 8, 20–22.
  • 2. Zhou Shining, Lin Baiquan. (1992). The storage and flow of coalbedmethane. Beijing: China Coal Industry Publishing House, 122-127.
  • 3. Li X.F., Pu Y.C., Sun C.Y., Ren W.N., Li Y.Y., Zhang Y.Q., Li J., Zang J.L., Hu A.M., Wen S.M. (2014). Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir. Acta Pet. Sin., 35, 1113–1129. (In Chinese)
  • 4. Li J.H., Su X.B., Lin X.Y., Guo H.Y. (2009). Relationship between discharge rate and productivity of coalbed methane wells. J. China Coal Soc., 34, 376–380.
  • 5. Liu S.Q., Sang S.X.. Li M.X, Liu H.H., Wang L.L. (2012). Control factors of coalbed methane well desorption cone under drainage well network in southern Qinshui basin. J. China Univ. Min. Technol., 41, 943–950.
  • 6. Herran-Gonzalez A., De La Cruz J.M., De Andres-Toro B., Risco-Martin J.L. (2009). Modeling and simulation of a gas distribution pipeline network. Applied Mathematical Modelling, 33, pp. 1584-1600.
  • 7. Hwang K., Mandayan S., Udpa S.S., Udpa L., Lord W., Atzal M. (2000). Characterization of gas pipeline inspection signals using wavelet basis function neural networks. NDTandE international, 33, pp. 531-545.
  • 8. Zhang J., Zhu D. (1996). A bilevel programming method for pipe network optimization. J Optim., 6, 838–857.
  • 9. El-Mahdy OFM, Ahmed MEH, Metwalli S. (2010). Computer aided optimization of natural gas pipe networks using genetic algorithm. Appl Soft Comput., 10, 1141–1150.
  • 10. Singh R. R., Nain P. K. S. (2012). “Optimization of natural pipeline design and its total cost using GA,” International Journal of Science and Research Publications, 2, 8, pp. 1–10.
  • 11. Alves F. D. S., Souza J. N. M. D., Costa A. L. H. (2016). “Multiobjective design optimization of natural gas transmission networks,” Computers and Chemical Engineering, 93, pp. 212–220.
  • 12. Trick M. D., Agarwal R., Ammer J. R. (1994). Gas-Field Deliverability Forecasting: A Coupled Reservoir Simulator and Surface Facilities Model, USDOE Morgantown Energy Technology Center.
  • 13. Coats B. K., Fleming G. C., Watts J. W., Rame M., Shiralkar G. S. (2004). “A generalized wellbore and surface facility model, fully coupled to a reservoir simulator,” SPE Reservoir Evaluation and Engineering, 7, 2, pp. 132–142.
  • 14. Lockhart RW, Martinelli RC. (1949). Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog., 45, 39–48.
  • 15. Gale J. (2002). Transmission of CO2: safety and economic considerations. Sixth Int. Conference. on Greenhouse Gas Control Technologies, Kyoto, September, 1–4.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df015be1-203f-4a12-9b6c-4f1dcc57dd3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.