Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Field protective forest belts which were created 50–70 years ago in the Forest Steppe of Ukraine have reached a critical age and do not have proper maintenance. Together with the intense impact on their condition of measures of agricultural intensification, atmospheric anthropogenic pollution and global warming, they have significantly lost their environmental protection and stabilizing agro-ecosystem functions. The purpose of our research was to assess the current ecological condition of the field protective forest belts of the Forest-Steppe of Ukraine based on the indicators of tree resistance to environmental changes. The ecological condition of field protective forest belts was determined by the following indicators: the proportion of felled trees in forest belts, the proportion of dry trees, the proportion of drying trees, the presence of grass cover, the spread of necrosis on a leaf, the proportion of necrosis on a leaf, the spread of chlorosis on a leaf, the proportion of chlorosis on a leaf, the proportion of trampled vegetation in the forest belts. Our research has established that the greatest diversity of species was characteristic to the openwork protective forest belts, and the least – to the blowing ones. All the main forest belts were more biodiverse than the additional ones. In 80% of forest belts, common ash is the main species, and in only 20% – is common maple. The largest share of felled trees (35%) and drying trees (35%) was found in the main blowing forest strip. We installed a slightly smaller proportion of drying and felled trees in the main openwork forest strip. And the least cut and drying trees were found in the dense field protection forest strip. The highest spread of necrosis: 40% of hornbeam leaves and 35% of maple leaves, as well as chlorosis: 18% of hornbeam leaves and 25% of maple leaves was found in the additional openwork forest strip. Also, a high percentage of the spread of necrosis and chlorosis was detected on the leaves of the common ash of the additional blowing forest strip, 18% and 25%, respectively. Necrosis and chlorosis were the least evident on the leaves of trees in the dense of forest belt. Premature yellowing of the leaves was detected only in ordinary hornbeam of the additional openwork forest belts in the amount of 15% of the leaves. Also, this type of the tree had the highest percentage of twisted leaves – 20%. The largest proportion of leaves with spots was found on common ash trees of the main openwork forest belt – 60% and common maple trees of the dense forest belt. The obtained results will make it possible to choose the right measures for the protection and preservation of field protective forest belts and to determine the most resistant and vulnerable tree species to environmental factors.
Wydawca
Rocznik
Tom
Strony
149--161
Opis fizyczny
Bibliogr. 40 poz. , rys., tab.
Twórcy
autor
- Vinnytsia National Agrarian University, Str. Sonyachna 3, 21002, Vinnytsia, Ukraine
autor
- Vinnytsia National Agrarian University, Str. Sonyachna 3, 21002, Vinnytsia, Ukraine
autor
- Vinnytsia National Agrarian University, Str. Sonyachna 3, 21002, Vinnytsia, Ukraine
autor
- Institute of Agrobiology, bulvar Vatslava Havela, 4, Kyiv, Ukraine
autor
- Vinnytsia National Agrarian University, Str. Sonyachna 3, 21002, Vinnytsia, Ukraine
autor
- Vinnytsia National Agrarian University, Str. Sonyachna 3, 21002, Vinnytsia, Ukraine
autor
- Vinnytsia National Agrarian University, Str. Sonyachna 3, 21002, Vinnytsia, Ukraine
autor
- Vinnytsia National Agrarian University, Str. Sonyachna 3, 21002, Vinnytsia, Ukraine
autor
- Vinnytsia National Agrarian University, Str. Sonyachna 3, 21002, Vinnytsia, Ukraine
Bibliografia
- 1. Branitskyi, Y., Telekalo, N., Kupchuk, I., Mazur, O., Alieksieiev, O., Okhota, Y. & Mazur, O. (2022). Improvement of technological methods of switchgrass (Panicum virgatum L.) growing in the Vinnytsia region. Acta Fytotechnica et Zootechnica. 25(4), 311–318. https://doi.org/10.15414/ afz.2022.25.04.311-318
- 2. Brzozowska, A., Dacko, M., Kalinichenko, A., Petrychenko, V.F., Tokovenko, I.P. (2018). Phytoplasmosis of bioenergy cultures. Mikrobiolohichnyi Zhurnal. 80(4), 108–127. https://doi.org/10.15407/ microbiolj80.04.108
- 3. Bulgakov V., Kaletnik H., Trokhaniak O., Lutkovska S., Klendii M., Ivanovs S., Popa L. & Yaropud V. (2024). Investigation of the energy indicators for the surface treatment of soil by a harrow with a screw-type working body. INMATEH-Agricultural Engineering. 2023, 71(3), 818–833. https://doi.org/10.35633/inmateh-71-72
- 4. Coop, J.D., Parks, S.A., Stevens-Rumann, C.S. & Rodman K.C. (2020). Wildfire-driven forest conversion in Western North American landscapes. BioScience, 70(8) 659–673. https://doi.org/10.1093/ biosci/biaa061
- 5. Didur, I., Bakhmat, M., Сhynchyk, O., Pantsyreva, H., Telekalo, N., Tkachuk, O. (2020). Substantiation of agroecological factors on soybean agrophytocenoses by analysis of variance of the Right-Bank Forest-Steppe in Ukraine. Ukrainian Journal of Ecology. 10(5), 54–61. https://doi.org/10.15421/2020_206
- 6. Furdychko, O.I. & Stadnyk, A.P. (2010). Scientific bases of functioning of the system of protective forests and protective forest plantations in agrolandscapes of Ukraine. Agroecological journal. 4, 5–12. https://doi.org/10.33730/2310-4678.4.2021.253095
- 7. Gallagher, R.V., Allen, S., & Wright, I.J. (2019). Safety margins and adaptive capacity of vegetation to climate change. Scientific Reports, 9, 8241. https://doi.org/10.1038/s41598-019-44483-x
- 8. Hetman, N., Veklenko, Y., Petrychenko, V., Korniichuk, O., & Buhaiov, V. (2024). Agrobiological substantiation of growing Hungarian vetch in mixed crops. Scientific Horizons. 27(4), 61–75. https://doi.org/10.48077/scihor4.2024.61
- 9. Hladun, H.B. (2005). The importance of protective forest plantations to ensure sustainable development of agricultural landscapes. Scientific Bulletin. 15(7), 113–118. https://doi.org/10.1016/j.jnc.2023.126551
- 10. Hnatiuk, T.T., Zhitkevich, N.V., Petrychenko, V.F., Kalinichenko, A.V. & Patyka, V.P. (2019). Soybean diseases caused by genus Pseudomonas phytopathenes bacteria. Mikrobiol. Z. 81(3), 68–83. https://doi.org/10.15407/microbiolj81.03.068
- 11. Honcharuk, I., Yemchyk, T., Tokarchuk, D., Bondarenko, V. (2022). the role of bioenergy utilization of wastewater in achieving sustainable development goals for Ukraine. European Journal of Sustainable Development. 12(2), 231–231. https://doi.org/10.14207/ejsd.2023.v12n2p231
- 12. Honcharuk, I., Matusyak, M., Pantsyreva, H., Prokopchuk, V., Telekalo, N. (2022). Peculiarities of reproduction of pinus nigra arn. In Ukraine. Bulletin of the Transilvania University of Brasov, Series II: Forestry, Wood Industry, Agricultural Food Engineering. 15. 64(1), 33–42. https://doi.org/10.1038/ s41598-019-44483-x
- 13. Jaupaj, O., Doko, A., Dervishi, A., Kadria, F., & Zaimi, K. (2023). Assessment of wildfires forecast performance in Albania: Case study. Scientific Horizons, 26(9), 143–152. https://doi.org/10.48077/scihor9.2023.143 https://doi.org/10.48077/ scihor9.2023.143
- 14. Kaletnik H., Yaropud V., Lutkovska S., & Aliiev E. (2024). Studying the air flow heating process in the vertical type ground heat exchanger. Przeglad Elektrotechniczny. 100(10), 46–54. https://doi.org/10.15199/48.2024.10.08
- 15. Kaletnik, G., Honcharuk, I., Okhota, Y. (2020). The Waste-free production development for the energy autonomy formation of ukrainian agricultural enterprises. Journal of Environmental Management and Tourism, 11(3), 513–522. https://doi.org/10.14505// jemt.v11.3(43).02
- 16. Khattar, J. (2023). The forest community surrounding juhu ecological park: a preliminary forest inventory and its ecological implications. Taiwan J For Sci, 38(2), 171–179.
- 17. Kulbanska, I., Boiko, H., Shvets, M., Vyshnevskyi, A., & Savchenko, Yu. (2023). The role of aphyllophoroid macromycetes as indicators of forest ecosystem disruption and reducers of biomass accumulation. Scientific Horizons, 26(3), 70–80. https://doi.org/10.48077/scihor3.2023.70
- 18. Kuo, Y.L., Jiang, J.X., Xu, Z.W., Yu, S.Y. (2022). Comparing the drought tolerance abilities of tree species in the Hengchun Coastal Forest and Lienhuachih Forest with two physiological indices. Taiwan J For Sci. 37(4), 275–94.
- 19. Liu, T.Y., Chen, C.H., Wang, L.J., Hung, T.H., Hsu, M.H., Wu, M.L. (2021). Investigation of Camellia tree diseases in Taiwan and establishment of a rapid detection method for Colletotrichum spp. Taiwan J For Sci, 36(1), 1–19.
- 20. Lohosha R., Palamarchuk V., Krychkovskyi V. & Belkin I. (2024). An advanced European overview of the bioenergy efficiency of using digestate from biogas plants when growing agricultural crops. Polityka Energetyczna, 27(1), 5–25. https://doi.org/10.33223/epj/127921
- 21. Mazur, V., Didur, I., Tkachuk, O., Pantsyreva, H., Ovcharuk, V. (2021). Agroecological stability of cultivars of sparsely distributed legumes in the context of climate change. Scientific Horizons. 24(1), 54–60. https://doi.org/10.48077/scihor.24(1).2021.54-60
- 22. Mazur, V., Didur, І., Tkachuk, О., Pantsyreva, Н. & Ovcharuk, V. (2021). Agroecological stability of cultivars of sparsely distributed legumes in the context of climate change. Scientific Horizons, 24(1), 54–60. https://doi.org/10.48077/scihor.24(1).2021.54-60
- 23. Mazur, V., Tkachuk, O., Pantsyreva, H., Demchuk, O. (2021). Quality of pea seeds and agroecological condition of soil when using structured water. Scientific Horizons. 24(7), 53–60. https://10.0.187.205/ scihor.24(7).2021.53-60
- 24. Mazur. V., Tkachuk, O., Pantsyreva, H., Kupchuk, I., Mordvaniuk M., Chynchyk O. (2021). Еcological suitability peas (Рisum sativum) varieties to climate change in Ukraine. Agraarteadus. Journal of Agricultural Science. 32, 2, 276–283. https://doi.org/10.15159/jas.21.26
- 25. Michotey, C., Anger, C., Albet, A., & Fady, B. (2021). Metadata from common gardens of the Forest Genetics Network for Research and Experimentation (GEN4X). Recherche Data Gouv, 3. https://doi.org/10.15454/50RS8C
- 26. Naseri, M.H., Jouibary, S.S. & Habashi, H. (2023). Analysis of forest tree dieback using UltraCam and UAV imagery. Scandinavian Journal of Forest Research, 38, 6, 392–400, https://doi.org/10 .1080/02827581.2023.2231349
- 27. Monarkh, V.V. & Pantsyreva, H.V. (2019). Stages of the environmental risk assessment. Ukrainian Journal of Ecology, 9(4), 484–492. https://doi.org/10.15421/2019_779
- 28. Mostovenko, V., Mazur, O., Didur, I., Kupchuk, I., Voloshyna, O. & Mazur, O. (2022). Garden pea yield and its quality indicators depending on the technological methods of growing in conditions of Vinnytsia region. Acta Fytotechnica et Zootechnica. 25(3), 226–241. https://doi.org/10.15414/afz.2022.25.03.226-241
- 29. Okrushko S. (2022). Allelopathic effect of couch grass (Elymus repens L.) on germination of common wheat seeds. Zemdirbyste. 109(4), 323–328. https://doi.org/10.13080/z-a.2022.109.041
- 30. Pecchi, M., Marchi, M., Burton, V., Gianenetti, F., Moriondo, M., Bernetti, I., Bindi, M., & Chirici, G. (2019). Species distribution modelling to support forest management. A literature review. Ecological Modelling, 411, 108817. https://doi.org/10.1016/j. ecolmodel.2019.108817
- 31. Petrychenko V., Petrychenko O., Fedoryshyna L., Kravchuk O., Korniichuk O. & Nitsenko V. (2022). Agricultural production in Ukraine: ecological challenges and impact on the quality of life. Financial And Credit Activity-problems Of Theory And Practice. 4(45), 374–384. 10.55643/ fcaptp.4.45.2022.3782
- 32. Petrychenko, V., Korniychuk, O., Lykhochvor, V., Kobak, S. & Pantsyrev, O. (2024). Study of Sowing Quality of Soybean Seeds Depending on Pre-Sowing Treatment of Seed. Journal of Ecological Engineering. 25(7), 332–339. https://doi.org/10.12911/22998993/188932
- 33. Petrychenko, V.F., Kobak, S.Ya., Chorna, V.M., Kolisnyk, S.I., Likhochvor, V.V. & Pyda, S.V. (2018). Formation of the nitrogen-fixing potential and productivity of soybean varieties selected at the institute of feeds and agriculture of podillia of NAAS. Mikrobiol. Z. 80(5), 63–75. https://doi.org/10.15407/microbiolj80.05.063
- 34. Razanov, S., Alieksieiev, O., Bakhmat, O., Bakhmat, M., Lytvyn, O., Alieksieievа, O., Vradii, O., Mazur, K., Razanova, A. & Mazurak, I. (2024). Accumulation of chemical elements in the vegetative mass of energy cultures grown on gray forest soils in the western forest steppe of Ukraine. Journal of Ecological Engineering. 25(9), 282–291. https://doi.org/10.12911/22998993/191439
- 35. Rihm, G., & Fady, B. (2023). Caractériser l’enveloppe climatique future des jardins communs forestiers: une approche essentielle pour mieux raisonner l’adaptation des essences. Revue forestière française, 74(4), 495–506. https://doi.org/10.20870/ revforfr.2023.7900
- 36. Seidl, R., Thom, D., Kautz, M., & Reyer, C.P. (2017). Forest disturbances under climate change. Nature Clim Change, 7, 395–402. https://doi.org/10.1038/nclimate3303
- 37. Thom, D., & Seidl, R. (2016). Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews, 91(3), 760–781. https://doi.org/10.1111/brv.12193
- 38. Tkachuk, O., Verhelis, V. (2021). Intensity of soil pollution by toxic substances depending on the degree of its washout. Scientific Horizons. 24(3), 52–57. https://doi.org/10.48077/scihor.24(3).2021.52-57
- 39. Tkachuk, О., Viter, N., Pankova, S., Titarenko, O., Yakovets, L. (2023). The current environmental state of the field protective forest belts of the Forest Steppe of Ukraine. International Journal of Ecosystems and Ecology Science (IJEES), 13(2), 1–8. https://doi.org/10.31407/ijees13.2
- 40. Vdovenko, S., Palamarchuk, I., Mazur, O., Mazur, O., & Mulyarchuk, O. (2024). Organic cultivation of carrot in the right-bank Forest-Steppe of Ukraine. Scientific Horizons, 27(1), 62–70. https://doi.org/10.48077/scihor1.2024.62
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-defff188-2d92-498d-9820-abddc70438d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.