PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Welding Heat Input on Microstructure and Corrosion Characterization in CGHAZ of X80 Pipeline Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The coarse-grained heat-affected zone specimens of X80 pipeline steel were produced by welding thermal simulation under different heat inputs of 10, 30, and 55 kJ/cm to study the effects of heat input on microstructure evolution and corrosion characterization. The corrosion resistance of coarse-grained heat-affected zones was poorer than that of base metal due to less homogenous in the former. For 10 kJ/cm coarse-grained heat-affected zone, the corrosion resistance was poorer than the others due to the more adsorption hydrogen around the needle-like martensite/austenite constituents and greater galvanic driving force between the needle-like martensite/austenite constituents and ferrite. In carbonate/bicarbonate solution, better corrosion resistance for coarse-grained heat-affected zones was obtained when the heat input is 30 kJ/cm, which can be attributed to the severe coarse martensite/austenite constituents for 55 kJ/cm coarse-grained heat-affected zone. In the H2S environment, the better corrosion resistance for coarse-grained heat-affected zone was obtained when the heat input is 55 kJ/cm, which can be attributed to the protective effect of corrosion products. In addition, the high content of M/A constituents for 30 kJ/cm CGHAZ was good for hydrogen adsorption, which was adverse to the corrosion resistance in acid environments.
Twórcy
autor
  • Qilu University of Technology (Shandong Academy of Sciences), School of Mechanical & Automotive Engineering, China
  • Shandong Institute of Mechanical Design and Research, China
autor
  • Qilu University of Technology (Shandong Academy of Sciences), School of Mechanical & Automotive Engineering, China
  • Shandong Institute of Mechanical Design and Research, China
  • School of Materials Science and Engineering, Tianjin University, China
autor
  • Qilu University of Technology (Shandong Academy of Sciences), School of Mechanical & Automotive Engineering, China
  • Shandong Institute of Mechanical Design and Research, China
autor
  • Qilu University of Technology (Shandong Academy of Sciences), School of Mechanical & Automotive Engineering, China
  • Shandong Institute of Mechanical Design and Research, China
Bibliografia
  • [1] H.R. Vanaei, A. Eslami, A. Egbewande, A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models, Int. J. Pres. Ves. Pip. 149, (2017).
  • [2] P.C. Okonkwo, M.H. Sliem, R.A. Shakoor, A.M.A. Mohamed, A.M. Abdullah, Effect of temperature on the corrosion behawior of API X120 pipeline steel in H2S environment, J. Mater. Eng. Perform. 26, (2017).
  • [3] S.K. Sharma, S. Maheshwari, A review on welding of high strength oil and gas pipeline steels, J. Nat. Gas Sci. Eng. 38, (2017).
  • [4] X.D. Cheng, C. Ma, R.K. Huang, S.N. Huang, W.D. Yang, Failure mode analysis of X80 buried steel pipeline under oblique-reverse fault, Soil Dyn. Earthq. Eng. 125, 105723 (2019).
  • [5] B. Liu, Z. Li, X. Yang, C. Du, X. Li, Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing Soil, Bioelectrochemistry 135, (2020). DOI: https://doi.org/10.1016/j.bioelechem.2020.107551
  • [6] B. Zhu, N. Jiang, C. Zhou, X. Luo, Y. Yao, T. Wu, Dynamic failure behavior of buried cast iron gas pipeline with local external corrosion subjected to blasting vibration, J. Nat. Gas Sci. Eng. 88, 103803 (2021). DOI: https://doi.org/10.1016/j.jngse.2021.103803
  • [7] S. Kanwal, N.Z. Ali, R. Hussain, F.U. Shah, Z. Akhter, Polythiourea formaldehyde based anticorrosion marine coatings on type 304 stainless steel, J. Mater. Res. Technol. 9, 2146 (2020). DOI: https://doi.org/10.1016/j.jmrt.2019.12.045
  • [8] A. Golchinvafa, S.H. Mousavi Anijdan, M. Sabzi, M. Sadeghi, The effect of natural inhibitor concentration of Fumaria officinalis and temperature on corrosion protection mechanism in API X80 pipeline steel in 1 M H2SO4 solution, Int. J. Pres. Ves. Pip. 188, 104241 (2020). DOI: https://doi.org/10.1016/j.ijpvp.2020.104241
  • [9] P.E. Alvarez, M.V. Fiori-Bimbi, A. Neske, S.A. Brandán, C.A. Gervasi, Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution, J. Ind. Eng. Chem. 58, 92 (2018). DOI: https://doi.org/10.1016/j.jiec.2017.09.012
  • [10] J.M. Jinjie Shi, Danqian Wang, Miao Wu, Improved corrosion resistance of a new 6% Cr steel in simulated concrete pore solution contaminated by chlorides, Corros. Sci. 174, (2020).
  • [11] P. Dohare, K.R. Ansari, M.A. Quraishi, I.B. Obot, Pyranpyrazole derivatives as novel corrosion inhibitors for mild steel useful for industrial pickling process: Experimental and Quantum Chemical Study, J. Ind. Eng. Chem. 52, 197 (2017). DOI: https://doi.org/10.1016/j.jiec.2017.03.044
  • [12] W. Zhao, Y. Zou, K. Matsuda, Z. Zou, Characterization of the effect of hydrogen sulfide on the corrosion of X80 pipeline steel in saline solution, Corros. Sci. 102, (2016). DOI: http://dx.doi.org/10.1016/j.corsci.2015.10.038
  • [13] G.A. Zhang, Y.F. Cheng, Micro-electrochemical characterization and Mott-Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution, Electrochim. Acta 55, 316 (2009). DOI: https://doi.org/10.1016/j.electacta.2009.09.001
  • [14] J. Wang, Q. Li, M.M. Li, T.h. Chen, Y.F. Zhou, Z.B. Yue, Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria, Bioresour. Technol. 163, (2014). DOI: https://doi.org/10.1016/j.biortech.2014.04.073
  • [15] Z.L. W. Wu, X.G. Li, C.W. Du, Z.Y. Cui, Influence of different heat-affected zone microstructures on the stress corrosion behawior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere, Mater. Sci. Eng.: A. 759, (2019).
  • [16] H. Ma, Z. Liu, C. Du, X. Li, Z. Cui, Comparative study of the SCC behavior of E690 steel and simulated HAZ microstructures in a SO2-polluted marine atmosphere, Mater. Sci. Eng: A. 650, 93 (2016). DOI: https://doi.org/10.1016/j.msea.2015.09.052
  • [17] Z.P. Zhao, K. Xu, P.F. Xu, B. Wang, CO2 corrosion behawior of simulated heat-affected zones for X80 pipeline steel, Mater Charact. 171, 110772 (2021). DOI: https://doi.org/10.1016/j.matchar.2020.110772
  • [18] Y. Zhu, Y. Xu, M. Wang, X. Wang, G. Liu, Y. Huang, Understanding the influences of temperature and microstructure on localized corrosion of subsea pipeline weldment using an integrated multielectrode array, Ocean Eng. 189, 106351 (2019). DOI: https://doi.org/10.1016/j.oceaneng.2019.106351
  • [19] C. Gennari, M. Lago, B. Bögre, I. Meszaros, I. Calliari, L. Pezzato, Microstructural and Corrosion Properties of Cold Rolled Laser Welded UNS S32750 Duplex Stainless Steel, Metals 8, 1074 (2018). DOI: https://doi.org/10.3390/met8121074
  • [20] R. Ashari, A. Eslami, M. Shamanian, S. Asghari, Effect of weld heat input on corrosion of dissimilar welded pipeline steels under simulated coating disbondment protected by cathodic protection, J. Mater. Res. Technol. 9, 2136 (2020). DOI: https://doi.org/10.1016/j.jmrt.2019.12.044
  • [21] T.T. Sun, W.T. Huo, L. G. Hou, W. Zhang, Y.S. Zhang, J.S. Zhang, Effect of heating rate during solution treatment on microstructure, mechanical property and corrosion resistance of high-strength AA7075 alloy, Mater. Charact. 167, (2020).
  • [22] Luo Y, Deng Y, Guan L, et al., The microstructure and corrosion resistance of as-extruded Mg-6Gd-2Y-(0-1.5) Nd-0.2Zr alloys. Mater Design. 2020; 186.
  • [23] Y. Luo, Y. Deng, L. Guan, L. Ye, X. Guo, The microstructure and corrosion resistance of as-extruded Mg-6Gd-2Y-(0-1.5) Nd-0.2Zr alloys, Mater. Design. 186, 108289 (2020). DOI: https://doi.org/10.1016/j.matdes.2019.108289
  • [24] F.M. Alabbas, C. Williamson, S.M. Bhola, J.R. Spear, D.L. Olson, B. Mishra, A.E. Kakpovbia, Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80), Int. Biodeter. Biodegr. 78, (2013). DOI: http://dx.doi.org/10.1016/j.ibiod.2012.10.014
  • [25] P. Zhou, B. Wang, L. Wang, Y. Hu, L. Zhou, Effect of welding heat input on grain boundary evolution and toughness properties in CGAAZ of X90 pipeline steel, Mater. Sci. Eng: A. 722, 112 (2018). DOI: https://doi.org/10.1016/j.msea.2018.03.029
  • [26] L.W. Wang, Z.Y. Liu, Z.Y. Cui, C.W. Du, X.H. Wang, X.G. Li, In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel, Corros. Sci. 85, 401 (2014). DOI: https://doi.org/10.1016/j.corsci.2014.04.053
  • [27] N.R. Honesty, A.A. Gewirth, Investigating the effect of aging on transpassive behavior of Ni-based alloys in sulfuric acid with shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS), Corros. Sci. 67, 67 (2013). DOI: https://doi.org/10.1016/j.corsci.2012.10.002
  • [28] M.A. Khan, Electrochemical polarisation studies on plasma-sprayed nickel-based superalloy, Applied Physics A. 120, 801 (2015). DOI: https://doi.org/10.1007/s00339-015-9291-0
  • [29] J. Xu, X. Wu, E.H. Han, Acoustic emission during the electrochemical corrosion of 304 stainless steel in H2SO4 solutions, Corros. Sci. 53, 448 (2011). DOI: https://doi.org/10.1016/j.corsci.2010.09.056
  • [30] F. Mohammadi, F.F. Eliyan, A. Alfantazi, Corrosion of simulated weld HAZ of API X-80 pipeline steel, Corros. Sci. 63, 323 (2012). DOI: https://doi.org/10.1016/j.corsci.2012.06.014
  • [31] I.M. Gadala, A. Alfantazi, A study of X100 pipeline steel passivation in mildly alkaline bicarbonate solutions using electrochemical impedance spectroscopy under potentiodynamic conditions and Mott-Schottky, Appl. Surf. Sci. 357, 356 (2015). DOI: https://doi.org/10.1016/j.apsusc.2015.09.029
  • [32] D.G. Li, Y.R. Feng, Z.Q. Bai, J.W. Zhu, M.S. Zheng, Photoelectrochemical analysis of passive film formed on X80 pipeline steel in bicarbonate/carbonate buffer solution, Appl. Surf. Sci. 254, 2837 (2008). DOI: https://doi.org/10.1016/j.apsusc.2007.10.036
  • [33] A.Q. Fu, Y.F. Cheng, Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC, Corros. Sci. 52, 2511 (2010). DOI: https://doi.org/10.1016/j.corsci.2010.03.019
  • [34] Y.R. Feng. D.G. Li, Z.Q. Bai, J.W. Zhu, M.S. Zheng, Influence of temperature chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate carbonate buffer solution, Electrochim. Acta 52 (28), 7877-7884 (2007). DOI: https://doi.org/10.1016/j.electacta.2007.06.059
  • [35] X.G. Li, L. Zhang, C.W. Du, Effect of environmental factors on electrochemical behavior of X70 pipeline steel in simulated soil solution, J. Iron Steel Res. Int. 16, 52-57, (2009).
  • [36] L. Pitre, M.D. Plimmer, F. Sparasci, M.E. Himbert, Determinations of the Boltzmann constant, CR Phys. 20, 129 (2019). DOI: https://doi.org/10.1016/j.crhy.2018.11.007
  • [37] C. Zhang, J.H. Zeng, Y.F. Wang, Manganese doped titanium dioxide with a tunable flat-band potential as photoanode in quantum dot sensitized solar cells for higher open circuit voltage, Chem. Phys. Lett. 761, 138099 (2020). DOI: https://doi.org/10.1016/j.cplett.2020.138099
  • [38] P. Bai, S. Zheng, C. Chen, Electrochemical characteristics of the early corrosion stages of API X52 steel exposed to H2S environments, Mater. Chem. Phys. 149-150, (2015). DOI: http://dx.doi.org/10.1016/j.matchemphys.2014.10.020
  • [39] M. Javidi, S. Bahalaou Horeh, Investigating the mechanism of stress corrosion cracking in near-neutral and high pH environments for API 5L X52 steel, Corros. Sci. 80, 213 (2014). DOI: https://doi.org/10.1016/j.corsci.2013.11.031
  • [40] A.Q. Fu, X. Tang, Y.F. Cheng, Characterization of corrosion of X70 pipeline steel in thin electrolyte layer under disbonded coating by scanning Kelvin probe, Corros. Sci. 51, 186 (2009). DOI: https://doi.org/10.1016/j.corsci.2008.10.018
  • [41] F.F. Eliyan, E.S. Mahdi, A. Alfantazi, Electrochemical evaluation of the corrosion behavior of API-X100 pipeline steel in aerated bicarbonate solutions, Corros. Sci. 58, 181 (2012). DOI: https://doi.org/10.1016/j.corsci.2012.01.015
  • [42] F. Xie, X. Li, D. Wang, M. Wu, D. Sun, Synergistic effect of sulphate-reducing bacteria and external tensile stress on the corrosion behaviour of X80 pipeline steel in neutral soil environment, Eng. Fail. Anal. 91, 382 (2018). DOI: https://doi.org/10.1016/j.engfailanal.2018.03.023
  • [43] M. Alizadeh, S. Bordbar, The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution, Corros. Sci. 70, (2013). DOI: https://doi.org/http://dx.doi.org/10.1016/j.corsci.2013.01.026
  • [44] W. Zhao, Y. Zou, D.X. Xia, Z.D. Zou, Effects of anodic protection on SCC behavior of X80 pipeline steel in high-pH carbonate-bicarbonate solution, Arch. Metall. Mater. 60, 1009 (2015). DOI: https://doi.org/10.1515/amm-2015-0251
  • [45] R.N. Parkins, S. Zhou. The stress corrosion cracking of C-Mn steel in CO2-HCO3--CO32- solutions. II: electrochemical and other data, Corros. Sci. 39, (1997).
  • [46] A. Torresislas, V. Salinasbravo, J. Albarran, J. Gonzalezrodriguez, Effect of hydrogen on the mechanical properties of X-70 pipeline steel in diluted solutions at different heat treatments, int. J. Hydrogen. Energ. 30, 1317 (2005). DOI: https://doi.org/10.1016/j.ijhydene.2005.04.007
  • [47] J.S. Elzbieta Sikora, Digby D. Macdonald, A new method for estimating the diffusivities of vacancies in passive films, Electrochim. Acta. 41, (1996).
  • [48] X. Du, X. Dai, Z. Li, X. Du, H. Shi, J. Wu, H. Lou, X. Feng, L. Zhao, Z. Li, Corrosion analysis and anti-corrosion measures of oil casing of sulfur content gas wells: a case study of Daniudi gas field in the Ordos Basin, Energy Rep. 7, 1280 (2021). DOI: https://doi.org/10.1016/j.egyr.2021.02.041
  • [49] A. Fragiel, S. Serna, R. Pérez, Electrochemical study of two microalloyed pipeline steels in H2S environments, Int. J. Hydrogen. Energ. 30, (2005). DOI: http://dx.doi.org/10.1016/j.ijhydene.2005.04.006
  • [50] Y.D. Han, H.Y. Jing, L.Y. Xu, Welding heat input effect on the hydrogen permeation in the X80 steel welded joints, MaterChemPhys. 132, 216 (2012). DOI: https://doi.org/10.1016/j.matchemphys.2011.11.036
  • [51] P. Bai, S. Zheng, H. Zhao, Y. Ding, J. Wu, C. Chen, Investigations of the diverse corrosion products on steel in a hydrogen sulfide environment, Corros. Sci. 87, (2014). DOI: http://dx.doi.org/10.1016/j.corsci.2014.06.048
  • [52] C. Zhou, X. Chen, Z. Wang, S. Zheng, X. Li, L. Zhang, Effects of environmental conditions on hydrogen permeation of X52 pipeline steel exposed to high H2S-containing solutions, Corros. Sci. 89, (2014). DOI: http://dx.doi.org/10.1016/j.corsci.2014.07.061
  • [53] W. Zhao, Y. Zou, K. Matsuda, Z. Zou, Corrosion behavior of reheated CGHAZ of X80 pipeline steel in H2S-containing environments, Mater. Design. 99, 44 (2016).
  • [54] Neetu, P.K. Katiyar, S. Sangal, K. Mondal, Effect of various phase fraction of bainite, intercritical ferrite, retained austenite and pearlite on the corrosion behavior of multiphase steels, Corros. Sci. 178, 109043 (2021). DOI: https://doi.org/10.1016/j.corsci.2020.109043
  • [55] L. Gan, F. Huang, X. Zhao, J. Liu, Y.F. Cheng, Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments, Int. J. Hydrogen. Energ. 43, (2018).
  • [56] A.A. Saleh, D. Hejazi, A.A. Gazder, D.P. Dunne, E.V. Pereloma, Investigation of the effect of electrolytic hydrogen charging of X70 steel: II. Microstructural and crystallographic analyses of the formation of hydrogen induced cracks and blisters, Int. J. Hydrogen. Energ. 41, 12424 (2016). DOI: https://doi.org/10.1016/j.ijhydene.2016.05.235
  • [57] H. Tian, J. Xin, Y. Li, X. Wang, Z. Cui, Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater, Corros. Sci. 158, 108089 (2019). DOI: https://doi.org/10.1016/j.corsci.2019.07.013
  • [58] O. Lavigne, E. Gamboa, V. Luzin, M. Law, Analysis of intergranular stress corrosion crack paths in gas pipeline steels; straight or inclined?, Eng. Failure Anal. 85, (2018).
Uwagi
The work was supported by the National Nature Science Foundation of China (no. 51805285), the Project funded by China Postdoctoral Science Foundation (2019M661016), the Key Research and Development Project of Shandong Province (2021LYXZ14), the innovation Team Project of Jinan (2019GXRC035).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-defe8e96-244a-41b1-9425-94d83cf0c4c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.