PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chlorinated benzenes and benzene degradation in aerobic pyrite suspension

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The focus of this study is to investigate the applicability of natural mineral iron disulfide (pyrite) in degradation of aromatic compounds including benzene and several chlorinated benzenes (from mono-chlorinated benzene (CB), di-chlorinated benzenes (di-CBs) to tri-chlorobenzenes (tri-CBs) in aerobic pyrite suspension by using laboratory batch experiments at 25°C and room pressure. At first, chlorobenzene was studied as a model compound for all considered aromatic compounds. CB was degraded in aerobic pyrite suspension, transformed to several organic acids and finally to CO2 and Clˉ. Transformations of remaining aromatic compounds were pursued by measuring their degradation rates and CO2 and Clˉ released with time. Transformation kinetics was fitted to the pseudo-first-order reactions to calculate degradation rate constant of each compound. Degradation rates of the aromatic compounds were different depending on their chemical structures, specifically the number and position of chlorine substituents on the benzene ring in this study. Compounds with the highest number of chlorine substituent at m-positions have highest degradation rate (1,3,5-triCB > 1,3-diCB > others). Three chlorine substituents closed together (1,2,3-triCB) generated steric hindrance effects. Therefore 1,2,3-triCB was the least degraded compound The degradation rates of all compounds were in the following order: 1,3,5-triCB > 1,3-diCB > 1,2,4-triCB ≅1,2-diCB ≅CB ≅benzene > 1,4-diCB > 1,2,3-triCB. The final products of the transformations were CO2 and Clˉ. Oxygen was the common oxidant for pyrite and aromatic compounds. The presence of aromatic compounds reduced the oxidation rate of pyrite, which reduced the amount of ferrous and sulfate ions release to aqueous solution.
Słowa kluczowe
Rocznik
Strony
115--125
Opis fizyczny
Bibliogr. 33 poz., fot., schem., tab., wykr.
Twórcy
autor
  • International University, Vietnam National University – Ho Chi Minh City
  • Tohoku University
Bibliografia
  • 1. Ahlberg, E. & Broo, A.E. (1997). Electrochemical reaction mechanisms at pyrite in acidic perchlorate solutions, Journal of The Electrochemical Society, 144(4), pp. 1281-1286.
  • 2. ATSDR, Division of toxicology and environmental medicines. Summary data for 2007 priority list of hazardous substances.
  • 3. Berger, M., De Hazen, M., Nejjari, A., Fournier, J., Gulgnard, J., Pezerat, H. & Cadet, J. (1993). Radical oxidation reaction of the purine moiety of 2'-deoxyribonucleosides and DNA by iron-containing minerals, Carcinogenesis, 14(1), pp. 41-46.
  • 4. Borda, M.J., Elsetinow, A.R., Schoonen, M.A. & Strongin, D.R. (2001). Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early Earth, Astrobiology, 1(3), pp. 283-288.
  • 5. Borda, M.J., Elsetinow, A.R., Strongin, D.R. & Schooen, M.A. (2003). A mechanism for the production of hydroxyl radical at surface defect sites on pyrite, Geochimica et Cosmochimica Acta, 67(5), pp. 935-939.
  • 6. Bruice, P.Y. (2004). Organic chemistry. Prentice Hall, NJ, USA. Carlson, D.L., McGuire, M.M., Roberts, A.L. & Fairbrother, D.H. (2003). Influence of surface composition on the kinetics of alachlor reduction by iron pyrite, Environmental Science & Technology, 37(11), pp. 2394-2399.
  • 7. Che, H. & Lee, W. (2011). Selective redox degradation of chlorinated aliphatic compounds by Fenton reaction in pyrite suspension, Chemosphere, 82(8), pp. 1103-1108.
  • 8. Cohn, C.A., Mueller, S., Wimmer, E., Leifer, N., Greenbaum, S., Strongin, D.R. & Schoonen, M.A. (2006). Pyrite-induced hydroxyl radical formation and its effect on nucleic acids, Geochemical Transactions, 7(1), 3.
  • 9. Cohn, C.A., Borda, M.J. & Schoonen, M.A. (2004). RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life, Earth and Planetary Science Letters, 225(3-4), pp. 271-278.
  • 10. Cohn, C.A., Mueller, S., Wimmer, E., Leifer, N., Greenbaum, S., Strongin, D.R. & Schoonen, M.A. (2006). Pyrite-induced hydroxyl radical formation and its effect on nucleic acids, Geochemical Transactions, 7(1), 3.
  • 11. Cohn, C.A., Laffers, R. & Schoonen, M.A. (2006). Using yeast RNA as a probe for generation of hydroxyl radicals by earth materials, Environmental Science & Technology, 40(8), pp. 2838-2843.
  • 12. Cohn, C.A., Simon, S.R. & Schoonen, M.A. (2008). Comparison of fluorescence-based techniques for the quantification of particle-induced hydroxyl radicals, Particle and Fibre Toxicology, 5, 2. doi:10.1186/1743-8977-5-2
  • 13. Ennaoui, A., Fiechter S., Pettenkofer, Ch., Aloso-Vante, N., Buker, K., Bronold, M., Hopfner, Ch. & Tributsch, H. (1993). Iron sulfides for solar energy conversion, Solar Energy Materials, 29, pp. 289-370.
  • 14. Hao, J., Cleveland, C., Lim, E., Strongin, D.R. & Schoonen, M.A. (2006). The effect of adsorbed lipid on pyrite oxidation under biotic conditions, Geochemical Transactions, 7(1), 8.
  • 15. Hsiao, Y.L. & Nobe, K. (1993). Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electrogenerated Fenton’s reagent, Journal of Applied Electrochemistry, 23(9), pp. 943-946.
  • 16. Kriegman-King, M.R. & Reinhard, M. (1994). Transformation of carbon tetrachloride by pyrite in aqueous solution, Environmental Science & Technology, 28(4), pp. 692-700.
  • 17. Lee, W. & Batchelor, B. (2002). Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite, Environmental Science & Technology, 36(23), pp. 5147-5154.
  • 18. Lee, W. & Batchelor, B. (2003). Reductive capacity of natural reductants, Environmental Science & Technology, 37(3), pp. 535-541.
  • 19. Lowson, R.T. (1982). Aqueous oxidation of pyrite by molecular oxygen, Chemical Reviews, 82(5), pp. 461-497.
  • 20. Nefso, E.K., Burns, S.E. & McGrath, C.J. (2005). Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron, Journal of Hazardous Materials, 123(1-3), pp. 79-88.
  • 21. Nesbitt, H.W., Bancroft, G.M., Pratt, A.R. & Scaini, M.J. (1998). Sulfur and iron surface states on fractured pyrite surfaces, American Mineralogist, 83(9-10), pp. 1067-1076.
  • 22. Nesbitt, H.W., Scaini, M., Hochst, H., Bancroft, G.M., Schaufuss, A.G. & Szargan, R. (2000). Synchrotron XPS evidence for Fe2+-S and Fe3+-S surface species on pyrite fracture-surfaces, and their 3D electronic states, American Mineralogist, 85(5-6), pp. 850-857.
  • 23. Ormad, P., Cortes, S., Puig, A. & Ovelleiro, J.L. (1997). Degradation of organochloride compounds by O3 and O3H2O2, Water Research, 31(9), pp. 2387-2391.
  • 24. Plagentz, V., Ebert, M. & Dahmke, A. (2006). Remediation of ground water containing chlorinated and brominated hydrocarbons, benzene and chromate by sequential treatment using ZVI and GAC, Environmental Geology, 49(5), pp. 684-695.
  • 25. Pham, H.T., Kitsuneduka, M., Hara, J., Suto, K. & Inoue, C. (2008). Trichloroethylene transformation by natural mineral pyrite: the deciding role of oxygen, Environmental Science & Technology, 42(19), pp. 7470-7475.
  • 26. Pham, H.T., Suto, K. & Inoue, C. (2009). Trichloroethylene transformation in aerobic pyrite suspension: pathways and kinetic modeling, Environmental Science & Technology, 43(17), pp. 6744-6749.
  • 27. Rimstidt, J.D. & Vaughan, D.J. (2003). Pyrite oxidation: a state-of- the-art assessment of the reaction mechanism, Geochimica et Cosmochimica acta, 67(5), pp. 873-880.
  • 28. Sedlak, D.L. & Andren, A.W. (1991). Oxidation of chlorobenzene with Fenton’s reagent, Environmental Science & Technology, 25(4), pp. 777-782.
  • 29. Vaughan, D.J. & Lennie, A.R. (1991). The iron sulphide minerals: their chemistry and role in nature, Science Progress, (1933), pp. 371-388.
  • 30. Weerasooriya, R. & Dharmasena, B. (2001). Pyrite-assisted degradation of trichloroethene (TCE), Chemosphere, 42(4), pp. 389-396.
  • 31. Xu, X., Zhou, M., He, P. & Hao, Z. (2005). Catalytic reduction of chlorinated and recalcitrant compounds in contaminated water, Journal of Hazardous Materials, 123(1-3), pp. 89-93.
  • 32. Zhang, L., Sawell, S., Moralejo, C. & Anderson, W.A. (2007). Heterogeneous photocatalytic decomposition of gas-phase chlorobenzene, Applied Catalysis B: Environmental, 71(3-4), pp. 135-142.
  • 33. Zhu, B. W., Lim, T.T. & Feng, J. (2006). Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica, Chemosphere, 65(7), pp. 1137-1145.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-defc29e5-a6fc-4102-b86e-d94221e2d52d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.