PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification of EEG signal by methods of machine learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electroencephalogram (EEG) signal of two healthy subjects that was available from literature, was studied using the methods of machine learning, namely, decision trees (DT), multilayer perceptron (MLP), K-nearest neighbours (kNN), and support vector machines (SVM). Since the data were imbalanced, the appropriate balancing was performed by Kmeans clustering algorithm. The original and balanced data were classified by means of the mentioned above 4 methods. It was found, that SVM showed the best result for the both datasets in terms of accuracy. MLP and kNN produce the comparable results which are almost the same. DT accuracies are the lowest for the given dataset, with 83.82% for the original data and 61.48% for the balanced data.
Rocznik
Strony
56--63
Opis fizyczny
Bibliogr. 21 poz., fig., tab.
Twórcy
  • Omar Al-Mukhtar University, Faculty of Engineering, Department of Computer Science, West Shiha, Dernah, Libya
autor
  • Ternopil Ivan Pul’uj National Technical University, Faculty of Computer Information Systems and Software Engineering, Department of Mathematical Methods in Engineering, Ruska 56, 46001, Ternopil, Ukraine
Bibliografia
  • [1] Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175–185.
  • [2] Amin, H. U., Mumtaz, W., Subhani, A. R., Saad, M. N. M., & Malik, A. S. (2017). Classification of EEG Signals Based on Pattern Recognition Approach. Frontiers in Computational Neuroscience, 11(103), 1–12.
  • [3] Bryant, R. A., & Sindicich, N. (2007). Hypnosis and Thought Suppression – More Data: A Brief Communication. International Journal of Clinical and Experimental Hypnosis, 56(1), 37–46.
  • [4] Cortes, C., & Vapnik, V. N. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
  • [5] Dvey-Aharon, Z., Fogelson, N., Peled, A, & Intrator, N. (2015). Schizophrenia Detection and Classification by Advanced Analysis of EEG Recordings Using a Single Electrode Approach. PLoS ONE, 10(4), 1–12.
  • [6] Haykin, S. (Ed.). (2009). Neural Networks and Learning Machines (3rd Edition). New Jersey, Prentice Hall.
  • [7] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.
  • [8] Lawhern, V., Hairston, W. D., McDowell, K., Westerfield, M., & Robbins, K. (2012). Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. Journal of Neuroscience Methods, 208(2), 181–189.
  • [9] Li, J., Struzik, Z., Zhang, L., & Cichocki, A. (2015). Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing, 165, 23–31.
  • [10] MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability – Volume 1: Statistics, 281–297.
  • [11] Parvinnia, E., Sabeti, M., Zolghadri Jahromi, M., & Boostani, R. (2014). Classification of EEG Signals using Adaptive Weighted Distance Nearest Neighbor Algorithm. Journal of King Saud University – Computer and Information Sciences, 26(1), 1–6.
  • [12] Podgorelec, V. (2012). Analyzing EEG signals with machine learning for diagnosing Alzheimer’s disease. Elektronika i Elektrotechnika, 18(8), 61–64.
  • [13] Provençal, S. C., Bond, S., Rizkallah, E., & El-Baalbaki, G. (2018). Hypnosis for burn wound care pain and anxiety: A systematic review and meta-analysis. Burns, 44(8), 1870–1881.
  • [14] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
  • [15] Real, R. G. L., & Kübler, A. (2014). Auditory oddball paradigm during hypnosis. Institute of Psychology, University of Würzburg.
  • [16] Sanei, S., & Chambers, J. A. (Eds.). (2007). EEG Signal processing. Great Britain, Chippenham, John Wiley & Sons.
  • [17] Satapathy, S. K., Jagadev, A. K., & Dehuri, S. (2017). Weighted majority voting based ensemble of classifiers using different machine learning techniques for classification of EEG signal to detect epileptic seizure. Informatica, 41(1), 99–110.
  • [18] Sun, L., Jin, B., Yang, B., Tong, J., Liu, C., & Xiong, H. (2019). Unsupervised EEG Feature Extraction Based on Echo State Network. Information Sciences, 475, 1–17.
  • [19] Terhune, D. B., Cleeremans, A., Raz, A., & Lynn, S. J. (2017). Hypnosis and top-down regulation of consciousness. Neuroscience and Biobehavioral Reviews, 81(A), 59–74.
  • [20] Thilakvathi, B., Shenbaga, Devi, S., Bhanu, K., & Malaippan, M. (2017). EEG signal complexity analysis for schizophrenia during rest and mental activity. Biomedical Research, 28(1): 1–9.
  • [21] Wood, C., & Bioy, A. (2008). Hypnosis and Pain in Children. Journal of Pain and Symptom Management, 35(4), 437–446.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-defb4f6f-bd2a-493f-ae13-bb8196525ece
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.