PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis and PCM selection for adsorption chiller aided by energy storage supplied from the district heating system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a theoretical analysis of thermal energy storage filled with phase change material (PCM) that is aimed at optimization of an adsorption chiller performance in an air-conditioning system. The equations describing a lumped parameter model were used to analyze internal heat transfer in the cooling installation. Those equations result from the energy balances of the chiller, PCM thermal storage unit and heat load. The influence of the control of the heat transfer fluid flow rate and heat capacity of the system components on the whole system operation was investigated. The model was used to validate the selection of Rubitherm RT62HC as a PCM for thermal storage. It also allowed us to assess the temperature levels that are likely to appear during the operation of the system before it will be constructed.
Rocznik
Strony
135--169
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr., wz.
Twórcy
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Heat Transfer Department, Fiszera 14, 80-231 Gdańsk, Poland
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Heat Transfer Department, Fiszera 14, 80-231 Gdańsk, Poland
autor
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Heat Transfer Department, Fiszera 14, 80-231 Gdańsk, Poland
  • ENERGA Ciepło Ostrołęka Sp. z o.o., Celna 13, 07-410 Ostrołęka, Poland
Bibliografia
  • [1] Leśko M., Bujalski W., Futyma K.: Operational optimization in district heating systems with the use of thermal energy storage. Energy 165(2018), 902–15. doi:10.1016/j.energy.2018.09.141
  • [2] Badyda K., Bujalski W., Niewiński G., Warchoł M.: Selected issues related to heat storage tank modelling and optimisation aimed at forecasting its operation. Arch. Thermodyn. 32(2011), 3, 3–31. doi: 10.2478/v10173-011-0010-8
  • [3] Marini D., Buswell R.A., Hopfe C.J.: Development of a dynamic analytical model for estimating waste heat from domestic hot water systems. Energy Build. 247(2021), 111119. doi: 10.1016/j.enbuild.2021.111119
  • [4] Khoury S., Maatouk C., Khoury K.. El Khatounian F.: Optimization methodology of thermal energy storage systems for domestic water heating applications with different configurations. J. Energy Stor. 50(2022), 104530. doi: 10.1016/j.est.2022.104530
  • [5] Energy Regulatory Office: Thermal power industry in numbers – 2016 (A. Buńczyk, Ed.). URE, Warszawa 2017 (in Polish).
  • [6] Energy Regulatory Office: Thermal power industry in numbers – 2021. URE, Warszawa 2022 (in Polish). – Energetyka cieplna w liczbach 2020. Warszawa 2022.
  • [7] Poland – Country Commercial Guide 2022. https://www.trade.gov/country-commercial-guides/poland-energy-sector
  • [8] Energy consumption in households in 2018 (K. Walkowska, Ed.). GUS, Warszawa 2019. https://stat.gov.pl/publikacje/
  • [9] Lesko M., Bujalski W.: Modeling of district heating networks for the purpose of operational optimization with thermal energy storage. Arch. Thermodyn. 38(2017),4, 139–163. doi: 10.1515/aoter-2017-0029
  • [10] Milewski J., Szabłowski Ł., Bujalski W.: Identification of the objective function for optimization of a seasonal thermal energy storage system. Arch. Thermodyn. 35(2014), 4, 69–81. doi: 10.2478/aoter-2014-0034
  • [11] Guelpa E., Verda V.: Thermal energy storage in district heating and cooling systems: A review. Appl. Energ. 252 (2019),113474. doi: 10.1016/j.apenergy.2019.113474
  • [12] Al-Yasiri Q., Szabó M., Arıcı M.: A review on solar-powered cooling and airconditioning systems for building applications. Energy Rep. 8 (2022), 2888–2907.doi: 10.1016/j.egyr.2022.01.172
  • [13] Kuczyńska A., Szaflik W.: Absorption and adsorption chillers applied to air conditioning systems. Arch. Thermodyn. 31(2010), 2, 77–94. doi: 10.2478/v10173-010- 0010-0
  • [14] Grzebielec A., Rusowicz A.: Analysis of the use of adsorption processes in trigeneration systems. Arch. Thermodyn. 34(2013), 4, 35–49. doi: 10.2478/aoter-2013-0028
  • [15] Amiri Rad E., Davoodi V.: Thermo-economic evaluation of a hybrid solar-gas driven and air-cooled absorption chiller integrated with hot water production by a transient modeling. Renew. Energ. 163 (2021), 1253–64. doi: 10.1016/j.renene.2020.08.157
  • [16] Rouf R.A., Jahan N., Alam K.C.A., Sultan A.A., Saha B.B., Saha S.C.: Improved cooling capacity of a solar heat driven adsorption chiller. Case Stud. Therm. Eng. 17 (2020), 100568. doi: 10.1016/j.csite.2019.100568
  • [17] Naseem M., Park S., Lee S.: Experimental and theoretical analysis of a trigeneration system consisting of adsorption chiller and high temperature PEMFC. Energ, Convers, Manage. 251 (2022), 114977. doi: 10.1016/j.enconman.2021.114977
  • [18] Karwacki J., Kwidziński R.: Theoretical analysis of a latent thermal energy storage system with an adsorption chiller. Polska Energetyka Słoneczna (2016), 1-4,59–64.
  • [19] Karwacki J., Kwidziński R., Lackowski M., Kapica P., Śniadał T., Leputa P., Laskowski M.: Analysis of the use of heat storage with PCM material in the case of a mismatch in the productivity of the source and receiver of cooling. Nowa Energia 67(2019), 2, 40–9 (in Polish).
  • [20] Szczęśniak A., Bujalski W., Grzebielec A., Futyma K., Karwacki J., Rolka P.: A hybrid district heating substation with an adsorption chiller and PCM storage units: a concept and preliminary study. E3S Web Conf. 321(2021), 02009.doi: 10.1051/e3sconf/202132102009
  • [21] Gjoka K., Rismanchi B., Crawford R.H.: Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers. Renew. Sust. Energ. Rev. 171(2023), 112997. doi: 10.1016/j.rser.2022.112997
  • [22] Buffa S., Cozzini M., D’Antoni M., Baratieri M., Fedrizzi R.: 5th generation district heating and cooling systems: A review of existing cases in Europe. Renew. Sust. Energ. Rev. 104 (2019), 504–22. doi: 10.1016/j.rser.2018.12.059
  • [23] Wang X., Li W., Luo Z., Wang K., Shah S.P.: A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energ. Buildings 260(2022), 111923. doi: 10.1016/j.enbuild.2022.111923
  • [24] Souayfane F., Fardoun F., Biwole P.H.: Phase change materials (PCM) for cooling applications in buildings: A review. Energy Buildings 129 (2016), 396–431.doi: 10.1016/j.enbuild.2016.04.006
  • [25] Koželj R., Osterman E., Leonforte F., Del Pero C., Miglioli A., Zavrl E., Stropnik R., Aste N., Stritih U.: Phase-change materials in hydronic heating and cooling systems: A literature review. Materials 13(2020), 2971. doi: 10.3390/ma13132971
  • [26] Mehling H., Cabeza L.F.: Heat and cold storage with PCM. An up to date introduction into basics and applications. Springer, Berlin 2008. doi: 10.1007/978-3-540-68557-9
  • [27] Dubovsky V., Ziskind G., Letan R.: Temperature moderation in a multistorey building by melting of a phase-change material. Arch. Thermodyn. 34(2013), 1,85–101. doi: 10.2478/aoter-2013-0006
  • [28] Jaworski M.: Thermal performance of building element containing phase change material (PCM) integrated with ventilation system – An experimental study. Appl. Therm. Eng. 70(2014), 665–74. doi: 10.1016/j.applthermaleng.2014.05.093
  • [29] Khan M.M.A., Saidur R., Al-Sulaiman F.A.: A review for phase change materials (PCMs) in solar absorption refrigeration systems. Renew. Sust. Energ. Rev.76 (2017), 105–37. doi: 10.1016/j.rser.2017.03.070
  • [30] Almasri R.A., Abu-Hamdeh N.H., Esmaeil K.K., Suyambazhahan S.: Thermal solar sorption cooling systems, a review of principle, technology, and applications. Alexandria Eng. J. 61 (2022), 367–402. doi: 10.1016/j.aej.2021.06.005
  • [31] Chauhan P.R., Kaushik S.C., Tyagi S.K.: Current status and technological advancements in adsorption refrigeration systems: A review. Renew. Sust. Energ. Rev. 154(2022), 111808. doi: 10.1016/j.rser.2021.111808
  • [32] Hassan A.A., Elwardany A.E., Ookawara S., Ahmed M., El-Sharkawy I.I.: Integrated adsorption-based multigeneration systems: A critical review and future trends. Int. J. Refrig. 116(2020), 129–45. doi: 10.1016/j.ijrefrig.2020.04.001
  • [33] Ullah K.R., Saidur R., Ping H.W., Akikur R.K., Shuvo N.H.: A review of solar thermal refrigeration and cooling methods. Renew. Sust. Energ. Rev. 24(2013), 499–513. doi: 10.1016/j.rser.2013.03.024
  • [34] Varvagiannis E., Charalampidis A., Zsembinszki G., Karellas S., Cabeza L.F.: Energy assessment based on semi-dynamic modelling of a photovoltaic driven vapour compression chiller using phase change materials for cold energy storage. Renew. Energ. 163 (2021), 198–212. doi: 10.1016/j.renene.2020.08.034
  • [35] Ghorbani B., Kowsary F., Ebrahimi S., Vijayaraghavan K.: CFD modeling and optimization of a latent heat storage unit for running a solar assisted single effect Li-Br absorption chiller using multi-objective genetic algorithm. Sustain Cities Soc. 34(2017), 321–34. doi: 10.1016/j.scs.2017.05.023
  • [36] Raj V.K., Baiju V., Junaid F.P.: Numerical investigations of thermal performance enhancement in phase change energy storage system effective for solar adsorption cooling systems. J. Energ. Stor. 45 (2022), 103696. doi: 10.1016/j.est.2021.103696
  • [37] Karwacki J.: Cooling system with PCM storage for an office building: Experimental investigation aided by a model of the office thermal dynamics. Materials 14(2021),6, 1356. doi: 10.3390/ma14061356
  • [38] Ochrymiuk T.: Numerical analysis of microholes film/effusion cooling effectiveness. J. Therm. Sci. 26 (2017), 459–464. doi: 10.1007/s11630-017-0962-3
  • [39] Szwaba R., Ochrymiuk T., Lewandowski T., Czerwinska J.: Experimental investigation of microscale effects in perforated plate aerodynamics. ASME J. Fluids Eng. 135(2013), 12, 1–10. doi: 10.1115/1.4024962
  • [40] Ochrymiuk T.: Numerical prediction of film cooling effectiveness over flat plate using variable turbulent Prandtl number closures. J. Therm. Sci. 25(2016), 280–286.doi: 10.1007/s11630-016-0861-z
  • [41] Kurowski M., Szwaba R., Telega J., Flaszynski P., Tejero F., Doerffer P.: Wall distance effect on heat transfer at high flow velocity. Aircr. Eng. Aerosp. Technol. 91(2019), 9, 1180–1186. doi: 10.1108/AEAT-01-2018-0022
  • [42] Szwaba R., Kaczynski P., Telega J., Doerffer P.: Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer. J. Therm. Sci.26(2017), 514–522. doi: 10.1007/s11630-017-0968-x
  • [43] Telega J., Szwaba R., Śmiałek M.A.: Compressible gas density measurement by means of Fourier analysis of interferograms. Measurement 189(2022), 110458. doi:10.1016/j.measurement.2021.110458
  • [44] Fahrenheit GmbH. https://fahrenheit.cool/en/
  • [45] Cabeza L.F., Barreneche C., Martorell I., Miró L., Sari-Bey S., Fois M., et al.: Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties. Renew. Sust. Energ. Rev. 43(2015), 1399–1414. doi: 10.1016/j.rser.2014.07.191
  • [46] Rolka P., Przybylinski T., Kwidzinski R., Lackowski M.: The heat capacity of low-temperature phase change materials (PCM) applied in thermal energy storage systems. Renew. Energ. 172(2021), 541–550. doi: 10.1016/j.renene.2021.03.038
  • [47] Rolka P., Kwidzinski R., Przybylinski T., Tomaszewski A.: Thermal characterization of medium-temperature phase change materials (PCMS) for thermal menergy storage using the T-history method. Materials 14(2021), 7371. doi: 10.3390/ma14237371
  • [48] Karwacki J., Kwidziński R.: Experimental investigation of PCM thermal energy storage charge and discharge process with aperiodic (ramp) temperature inputs. E3S Web Conf. 70(2018), 03005. doi: 10.1051/e3sconf/20187003005
  • [49] PCM Axiotherm ATP60 Data sheet. https://www.axiotherm.de/en/download/project/productdatasheet/file/20/
  • [50] PCM Axiotherm ATP70 Data sheet. https://www.axiotherm.de/en/download/project/productdatasheet/file/21/
  • [51] PCM Croda Therm 60 Data sheet. https://www.crodaindustrialspecialties.com/engb/product-finder/product/1803-crodatherm_1_60
  • [52] PCM Rubitherm RT62HC Data sheet. https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT62HC_EN_09102020.PDF
  • [53] PCM Rubitherm RT69HT Data sheet. https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT69HC_EN_09102020.PDF
  • [54] PCM Rubitherm RT70HC Data sheet. https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT70HC_EN_09102020.PDF
  • [55] Matysko R., Dyczkowska M.: Thermal dynamics of a building. Trans. Inst. FluidFlow Mach. 141(2018), 31–40.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-defa6b30-50cd-4bde-9176-ee10fe16c175
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.