PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Using Artificial Neural Networks for predicting ship fuel consumption

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In marine vessel operations, fuel costs are major operating costs which affect the overall profitability of the maritime transport industry. The effective enhancement of using ship fuel will increase ship operation efficiency. Since ship fuel consumption depends on different factors, such as weather, cruising condition, cargo load, and engine condition, it is difficult to assess the fuel consumption pattern for various types of ships. Most traditional statistical methods do not consider these factors when predicting marine vessel fuel consumption. With technological development, different statistical models have been developed for estimating fuel consumption patterns based on ship data. Artificial Neural Networks (ANN) are some of the most effective artificial methods for modelling and validating marine vessel fuel consumption. The application of ANN in maritime transport improves the accuracy of the regression models developed for analysing interactive relationships between various factors. The present review sheds light on consolidating the works carried out in predicting ship fuel consumption using ANN, with an emphasis on topics such as ANN structure, application and prediction algorithms. Future research directions are also proposed and the present review can be a benchmark for mathematical modelling of ship fuel consumption using ANN.
Rocznik
Tom
Strony
39--60
Opis fizyczny
Bibliogr. 203 poz., rys., tab.
Twórcy
  • Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
  • Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
  • Gdynia Maritime University, Faculty of Marine Engineering, Poland
autor
  • Gdansk University of Technology, Poland
  • Mechanical Engineering Department, Delhi Skill and Entrepreneurship University, India
  • PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
  • PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
  • PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
Bibliografia
  • 1. V. J. Jimenez, H. Kim, and Z. H. Munim, “A review of ship energy efficiency research and directions towards emission reduction in the maritime industry,” J. Clean. Prod., vol. 366, p. 132888, Sep. 2022, doi: 10.1016/j.jclepro.2022.132888.
  • 2. A. T. Hoang, “Applicability of fuel injection techniques for modern diesel engines,” in International Conference on Sustainable Manufacturing, Materials and Technologies, ICSMMT 2019, 2020, p. 020018. doi: 10.1063/5.0000133.
  • 3. T. a Boden, G. Marland, and R. J. Andres, “Global, Regional, and National Fossil-Fuel CO2 Emissions,” Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab. USA Oak Ridge TN Dep. Energy, 2009.
  • 4. I. A. Fernández, M. R. Gómez, J. R. Gómez, and L. M. López-González, “Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System,” Polish Marit. Res., vol. 27, no. 1, 2020, doi: 10.2478/pomr-2020-0009.
  • 5. V. D. Bui and H. P. Nguyen, “Role of Inland Container Depot System in Developing the Sustainable Transport System,” Int. J. Knowledge-Based Dev., vol. 12, no. 3/4, p. 1, 2022, doi: 10.1504/IJKBD.2022.10053121.
  • 6. A. Urbahs and V. Zavtkevics, “Oil Spill Detection Using Multi Remote Piloted Aircraft for the Environmental Monitoring of Sea Aquatorium,” Environ. Clim. Technol., vol. 24, no. 1, pp. 1–22, Jan. 2020, doi: 10.2478/rtuect-2020-0001.
  • 7. X. P. Nguyen, D. T. Nguyen, V. V. Pham, and V. D. Bui, “Evaluation of the synergistic effect in wastewater treatment from ships by the advanced combination system,” Water Conserv. Manag., vol. 5, no. 1, pp. 60–65, 2021.
  • 8. D. T. Vo, X. P. Nguyen, T. D. Nguyen, R. Hidayat, T. T. Huynh, and D. T. Nguyen, “A review on the internet of thing (IoT) technologies in controlling ocean environment,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–19, Jul. 2021, doi: 10.1080/15567036.2021.1960932.
  • 9. E. Lindstad, B. Lagemann, A. Rialland, G. M. Gamlem, and A. Valland, “Reduction of maritime GHG emissions and the potential role of E-fuels,” Transp. Res. Part D Transp. Environ., vol. 101, p. 103075, Dec. 2021, doi: 10.1016/j. trd.2021.103075.
  • 10. P. Sharma et al., “Using response surface methodology approach for optimizing performance and emission parameters of diesel engine powered with ternary blend of Solketal-biodiesel-diesel,” Sustain. Energy Technol. Assessments, vol. 52, p. 102343, Aug. 2022, doi: 10.1016/j. seta.2022.102343.
  • 11. Z. Wu and X. Xia, “Tariff-driven demand side management of green ship,” Sol. Energy, 2018, doi: 10.1016/j. solener.2018.06.033.
  • 12. W. Tarełko, “The effect of hull biofouling on parameters characterising ship propulsion system efficiency,” Polish Marit. Res., 2014, doi: 10.2478/pomr-2014-0038.
  • 13. H. P. Nguyen, N. D. K. Pham, and V. D. Bui, “TechnicalEnvironmental Assessment of Energy Management Systems in Smart Ports,” Int. J. Renew. Energy Dev., vol. 11, no. 4, pp. 889–901, Nov. 2022, doi: 10.14710/ijred.2022.46300.
  • 14. V. V. Pham and A. T. Hoang, “Analyzing and selecting the typical propulsion systems for ocean supply vessels,” 2020. doi: 10.1109/ICACCS48705.2020.9074276.
  • 15. A. T. Hoang, V. D. Tran, V. H. Dong, and A. T. Le, “An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultralow-sulphur diesel and Jatropha-based biodiesel,” J. Mar. Eng. Technol., vol. 21, no. 2, pp. 73–81, Mar. 2022, doi: 10.1080/20464177.2019.1595355.
  • 16. H. P. Nguyen, P. Q. P. Nguyen, and T. P. Nguyen, “Green Port Strategies in Developed Coastal Countries as Useful Lessons for the Path of Sustainable Development: A case study in Vietnam,” Int. J. Renew. Energy Dev., vol. 11, no. 4, pp. 950–962, Nov. 2022, doi: 10.14710/ijred.2022.46539.
  • 17. V. V. Pham, A. T. Hoang, and H. C. Do, “Analysis and evaluation of database for the selection of propulsion systems for tankers,” 2020. doi: 10.1063/5.0007655.
  • 18. International Maritime Organization(IMO), “Third IMO GHG study executive summary,” 2014.
  • 19. International Maritime Organization(IMO), “MEPC 213 63”.
  • 20. International Maritime Organization(IMO), “Guıdelınes For The Development Of A Shıp Energy Effıcıency Management Plan (SEEMP)”.
  • 21. International Maritime Organization(IMO), “MEPC 214 63”.
  • 22. International Maritime Organization(IMO), “Guıdelınes On The Method Of Calculatıon Of The Attaıned Energy Effıcıency Desıgn Index (EEDI) For New Shıps”.
  • 23. International Maritime Organization(IMO), “Prevention of Air Pollution from Ships,” 2005.
  • 24. V. D. Tran, A. T. Le, and A. T. Hoang, “An Experimental Study on the Performance Characteristics of a Diesel Engine Fueled with ULSD-Biodiesel Blends.,” Int. J. Renew. Energy Dev., vol. 10, no. 2, pp. 183–190, 2021.
  • 25. R. Adland, P. Cariou, H. Jia, and F. C. Wolff, “The energy efficiency effects of periodic ship hull cleaning,” J. Clean. Prod., 2018, doi: 10.1016/j.jclepro.2017.12.247.
  • 26. H. Zeraatgar and M. H. Ghaemi, “The Analysis of Overall Ship Fuel Consumption in Acceleration Manoeuvre Using Hull-Propeller-Engine Interaction Principles and Governor Features,” Polish Marit. Res., vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0018.
  • 27. H. Islam and G. Soares, “Effect of trim on container ship resistance at different ship speeds and drafts,” Ocean Eng., 2019, doi: 10.1016/j.oceaneng.2019.03.058.
  • 28. X. P. Nguyen, “A simulation study on the effects of hull form on aerodynamic performances of the ships,” in Proceedings of the 2019 1st International Conference on Sustainable Manufacturing, Materials and Technologies, 2020, p. 020015. doi: 10.1063/5.0000140.
  • 29. R. D. Ionescu, I. Szava, S. Vlase, M. Ivanoiu, and R. Munteanu, “Innovative Solutions for Portable Wind Turbines, Used on Ships,” Procedia Technol., 2015, doi: 10.1016/j.protcy.2015.02.102.
  • 30. W.-H. Chen et al., “Optimization of a vertical axis wind turbine with a deflector under unsteady wind conditions via Taguchi and neural network applications,” Energy Convers. Manag., vol. 254, p. 115209, Feb. 2022, doi: 10.1016/j.enconman.2022.115209.
  • 31. L. Pascali, “The Wind of Change: Maritime Technology, Trade, and Economic Development,” Am. Econ. Rev., vol. 107, no. 9, pp. 2821–2854, Sep. 2017, doi: 10.1257/ aer.20140832.
  • 32. H. Wang, E. Oguz, B. Jeong, and P. Zhou, “Life cycle and economic assessment of a solar panel array applied to a short route ferry,” J. Clean. Prod., 2019, doi: 10.1016/j. jclepro.2019.02.124.
  • 33. W. Yu, P. Zhou, and H. Wang, “Evaluation on the energy efficiency and emissions reduction of a short-route hybrid sightseeing ship,” Ocean Eng., 2018, doi: 10.1016/j. oceaneng.2018.05.016.
  • 34. M. N. Nyanya, H. B. Vu, A. Schönborn, and A. I. Ölçer, “Wind and solar assisted ship propulsion optimisation and its application to a bulk carrier,” Sustain. Energy Technol. Assessments, vol. 47, p. 101397, Oct. 2021, doi: 10.1016/j. seta.2021.101397.
  • 35. X. P. Nguyen and V. H. Dong, “A study on traction control system for solar panel on vessels,” 2020, p. 020016. doi: 10.1063/5.0007708.
  • 36. N. Alujevic, I. Catipovic, S. Malenica, I. Senjanovic, and N. Vladimir, “Ship roll control and energy harvesting using a U-tube anti-roll tank,” 2018.
  • 37. Y. Huo, X. Dong, and S. Beatty, “Cellular Communications in Ocean Waves for Maritime Internet of Things,” IEEE Internet Things J., vol. 7, no. 10, pp. 9965–9979, Oct. 2020, doi: 10.1109/JIOT.2020.2988634.
  • 38. N. C. Shih, B. J. Weng, J. Y. Lee, and Y. C. Hsiao, “Development of a 20 kW generic hybrid fuel cell power system for small ships and underwater vehicles,” 2014. doi: 10.1016/j.ijhydene.2014.01.113.
  • 39. H. Xing, C. Stuart, S. Spence, and H. Chen, “Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives,” Sustainability, vol. 13, no. 3, p. 1213, 2021.
  • 40. M. Jelić, V. Mrzljak, G. Radica, and N. Račić, “An alternative and hybrid propulsion for merchant ships: current state and perspective,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–33, Oct. 2021, doi: 10.1080/15567036.2021.1963354.
  • 41. O. Konur, C. O. Colpan, and O. Y. Saatcioglu, “A comprehensive review on organic Rankine cycle systems used as waste heat recovery technologies for marine applications,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 2, pp. 4083–4122, Jun. 2022, doi: 10.1080/15567036.2022.2072981.
  • 42. L. Mihanović, M. Jelić, G. Radica, and N. Račić, “EXPERIMENTAL INVESTIGATION OF MARINE ENGINE EXHAUST EMISSIONS,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–14, Dec. 2021, doi: 10.1080/15567036.2021.2013344.
  • 43. Y. A. chaboki, A. Khoshgard, G. Salehi, and F. Fazelpour, “Thermoeconomic analysis of a new waste heat recovery system for large marine diesel engine and comparison with two other configurations,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–26, Jun. 2020, doi: 10.1080/15567036.2020.1781298.
  • 44. S. Vakili, A. I. Ölçer, A. Schönborn, F. Ballini, and A. T. Hoang, “Energy‐related clean and green framework for shipbuilding community towards zero‐emissions: A strategic analysis from concept to case study,” Int. J. Energy Res., vol. 46, no. 14, pp. 20624–20649, Nov. 2022, doi: 10.1002/er.7649.
  • 45. V. N. Armstrong and C. Banks, “Integrated approach to vessel energy efficiency,” Ocean Eng., 2015, doi: 10.1016/j. oceaneng.2015.10.024.
  • 46. N. H. Phuong, “What solutions should be applied to improve the efficiency in the management for port system in Ho Chi Minh City,” Int. J. Innov. Creat. Chang., vol. 5, no. 2, pp. 1747–1769, 2019.
  • 47. V. Glavatskhih, A. Lapkin, L. Dmitrieva, I. Khodikova, and A. Golovin, “Ships’ energy efficiency management: organizational and economic aspect,” MATEC Web Conf., vol. 339, p. 01020, Jul. 2021, doi: 10.1051/ matecconf/202133901020.
  • 48. M. Stopford, Maritime economics: Third edition. 2008. doi: 10.4324/9780203891742.
  • 49. M. H. Ghaemi and H. Zeraatgar, “Impact of Propeller Emergence on Hull, Propeller, Engine, and Fuel Consumption Performance in Regular Head Waves,” Polish Marit. Res., vol. 29, no. 4, pp. 56–76, Dec. 2022, doi: 10.2478/ pomr-2022-0044.
  • 50. M. S. Eide, T. Longva, P. Hoffmann, Ø. Endresen, and S. B. Dalsøren, “Future cost scenarios for reduction of ship CO2 emissions,” Marit. Policy Manag., 2011, doi: 10.1080/03088839.2010.533711.
  • 51. Z. Yuan, J. Liu, Q. Zhang, Y. Liu, Y. Yuan, and Z. Li, “Prediction and optimisation of fuel consumption for inland ships considering real-time status and environmental factors,” Ocean Eng., vol. 221, p. 108530, Feb. 2021, doi: 10.1016/j.oceaneng.2020.108530.
  • 52. T. Uyanık, Ç. Karatuğ, and Y. Arslanoğlu, “Machine learning approach to ship fuel consumption: A case of container vessel,” Transp. Res. Part D Transp. Environ., vol. 84, p. 102389, Jul. 2020, doi: 10.1016/j.trd.2020.102389.
  • 53. E. Işıklı, N. Aydın, L. Bilgili, and A. Toprak, “Estimating fuel consumption in maritime transport,” J. Clean. Prod., vol. 275, p. 124142, Dec. 2020, doi: 10.1016/j.jclepro.2020.124142.
  • 54. F. Cipollini, L. Oneto, A. Coraddu, A. J. Murphy, and D. Anguita, “Condition-Based Maintenance of Naval Propulsion Systems with supervised Data Analysis,” Ocean Engineering. 2018. doi: 10.1016/j.oceaneng.2017.12.002.
  • 55. Y. Raptodimos and I. Lazakis, “Using artificial Neural network-self-organising map for data clustering of marine engine condition monitoring applications,” Ships Offshore Struct., 2018, doi: 10.1080/17445302.2018.1443694.
  • 56. H. Bakır et al., “Forecasting of future greenhouse gas emission trajectory for India using energy and economic indexes with various metaheuristic algorithms,” J. Clean. Prod., vol. 360, p. 131946, Aug. 2022, doi: 10.1016/j. jclepro.2022.131946.
  • 57. K. Wang et al., “A comprehensive review on the prediction of ship energy consumption and pollution gas emissions,” Ocean Eng., vol. 266, p. 112826, Dec. 2022, doi: 10.1016/j. oceaneng.2022.112826.
  • 58. K. A. Chrysafis, I. N. Theotokas, and I. N. Lagoudis, “Managing fuel price variability for ship operations through contracts using fuzzy TOPSIS,” Res. Transp. Bus. Manag., vol. 43, p. 100778, Jun. 2022, doi: 10.1016/j. rtbm.2021.100778.
  • 59. A. Fan, J. Yang, L. Yang, D. Wu, and N. Vladimir, “A review of ship fuel consumption models,” Ocean Eng., vol. 264, p. 112405, Nov. 2022, doi: 10.1016/j.oceaneng.2022.112405.
  • 60. J.-G. Kim, H.-J. Kim, and P. T.-W. Lee, “Optimizing ship speed to minimize fuel consumption,” Transp. Lett., vol. 6, no. 3, pp. 109–117, Jul. 2014, doi: 10.1179/1942787514Y.0000000016.
  • 61. S. Sherbaz and W. Duan, “Operational options for green ships,” J. Mar. Sci. Appl., vol. 11, no. 3, pp. 335–340, Sep. 2012, doi: 10.1007/s11804-012-1141-2.
  • 62. J. A. Reggia and S. Tuhrim, Computer-assisted medical decision making. Springer Science & Business Media, 2012.
  • 63. B. Kawan, H. Wang, G. Li, and K. Chhantyal, “Data-driven Modeling of Ship Motion Prediction Based on Support Vector Regression,” Sep. 2017, pp. 350–354. doi: 10.3384/ ecp17138350.
  • 64. L. Zhang, Q. Meng, Z. Xiao, and X. Fu, “A novel ship trajectory reconstruction approach using AIS data,” Ocean Eng., vol. 159, pp. 165–174, Jul. 2018, doi: 10.1016/j. oceaneng.2018.03.085.
  • 65. O. B. Öztürk and E. Başar, “Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping,” Ocean Eng., vol. 243, p. 110209, Jan. 2022, doi: 10.1016/j. oceaneng.2021.110209.
  • 66. J. Hadi, Z. Y. Tay, and D. Konovessis, “Ship Navigation and Fuel Profiling based on Noon Report using Neural Network Generative Modeling,” J. Phys. Conf. Ser., vol. 2311, no. 1, p. 012005, Jul. 2022, doi: 10.1088/1742-6596/2311/1/012005.
  • 67. B. Ban, J. Yang, P. Chen, J. Xiong, and Q. Wang, “Ship Track Regression Based on Support Vector Machine,” IEEE Access, vol. 5, pp. 18836–18846, 2017, doi: 10.1109/ ACCESS.2017.2749260.
  • 68. M. Bentin, D. Zastrau, M. Schlaak, D. Freye, R. Elsner, and S. Kotzur, “A New Routing Optimization Tool-influence of Wind and Waves on Fuel Consumption of Ships with and without Wind Assisted Ship Propulsion Systems,” Transp. Res. Procedia, vol. 14, pp. 153–162, 2016, doi: 10.1016/j. trpro.2016.05.051.
  • 69. M. Haranen, P. Pakkanen, R. Kariranta, and J. Salo, “White, Grey and Black-Box Modelling in Ship Performance Evaluation,” 1st Hull Performence Insight Conf., 2016.
  • 70. M. L. Fam, Z. Y. Tay, and D. Konovessis, “An Artificial Neural Network for fuel efficiency analysis for cargo vessel operation,” Ocean Eng., vol. 264, p. 112437, Nov. 2022, doi: 10.1016/j.oceaneng.2022.112437.
  • 71. “The MIT encyclopedia of the cognitive sciences,” Choice Rev. Online, 1999, doi: 10.5860/choice.37-1902.
  • 72. I. H. Witten, E. Frank, and M. a. Hall, Data Mining: Practical Machine Learning Tools and Techniques, Third Edition. 2011.
  • 73. P. Karagiannidis and N. Themelis, “Data-driven modelling of ship propulsion and the effect of data pre-processing on the prediction of ship fuel consumption and speed loss,” Ocean Eng., vol. 222, p. 108616, Feb. 2021, doi: 10.1016/j. oceaneng.2021.108616.
  • 74. G. Lampropoulos, “Artificial Intelligence, Big Data, and Machine Learning in Industry 4.0,” in Encyclopedia of Data Science and Machine Learning, IGI Global, 2022, pp. 2101–2109. doi: 10.4018/978-1-7998-9220-5.ch125.
  • 75. K. Karunamurthy, A. A. Janvekar, P. L. Palaniappan, V. Adhitya, T. T. K. Lokeswar, and J. Harish, “Prediction of IC engine performance and emission parameters using machine learning: A review,” J. Therm. Anal. Calorim., Jan. 2023, doi: 10.1007/s10973-022-11896-2.
  • 76. P. Sharma, “Data-driven predictive model development for efficiency and emission characteristics of a diesel engine fueled with biodiesel/diesel blends,” in Artificial Intelligence for Renewable Energy Systems, Elsevier, 2022, pp. 329–352. doi: 10.1016/B978-0-323-90396-7.00005-5.
  • 77. M. B. Patel, J. N. Patel, and U. M. Bhilota, “Comprehensive Modelling of ANN,” in Research Anthology on Artificial Neural Network Applications, IGI Global, 2022, pp. 31–40. doi: 10.4018/978-1-6684-2408-7.ch002.
  • 78. Z. Tian and S. Fong, “Survey of meta-heuristic algorithms for deep learning training,” Optim. algorithms—methods Appl., 2016.
  • 79. W.-H. Chen et al., “A comparative analysis of biomass torrefaction severity index prediction from machine learning,” Appl. Energy, vol. 324, p. 119689, Oct. 2022, doi: 10.1016/j.apenergy.2022.119689.
  • 80. O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11, p. e00938, Nov. 2018, doi: 10.1016/j.heliyon.2018.e00938.
  • 81. O. I. Abiodun et al., “Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition,” IEEE Access, vol. 7, pp. 158820–158846, 2019, doi: 10.1109/ ACCESS.2019.2945545.
  • 82. J.-H. Kim, Y. Kim, and W. Lu, “Prediction of ice resistance for ice-going ships in level ice using artificial neural network technique,” Ocean Eng., vol. 217, p. 108031, Dec. 2020, doi: 10.1016/j.oceaneng.2020.108031.
  • 83. S. Gan, S. Liang, K. Li, J. Deng, and T. Cheng, “Ship trajectory prediction for intelligent traffic management using clustering and ANN,” in 2016 UKACC 11th International Conference on Control (CONTROL), Aug. 2016, pp. 1–6. doi: 10.1109/CONTROL.2016.7737569.
  • 84. N. Gupta, “Artificial neural network,” Netw. Complex Syst., vol. 3, no. 1, pp. 24–28, 2013.
  • 85. I. Veza et al., “Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine,” Alexandria Eng. J., vol. 61, no. 11, pp. 8363–8391, Nov. 2022, doi: 10.1016/j.aej.2022.01.072.
  • 86. M. Sharifzadeh, A. Sikinioti-Lock, and N. Shah, “Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression,” Renew. Sustain. Energy Rev., vol. 108, pp. 513–538, Jul. 2019, doi: 10.1016/j.rser.2019.03.040.
  • 87. A. Gopi, P. Sharma, K. Sudhakar, W. K. Ngui, I. Kirpichnikova, and E. Cuce, “Weather Impact on Solar Farm Performance: A Comparative Analysis of Machine Learning Techniques,” Sustainability, vol. 15, no. 1, p. 439, Dec. 2022, doi: 10.3390/su15010439.
  • 88. P. Sharma and B. J. Bora, “A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries,” Batteries, vol. 9, no. 1, p. 13, Dec. 2022, doi: 10.3390/batteries9010013.
  • 89. I. . Basheer and M. Hajmeer, “Artificial neural networks: fundamentals, computing, design, and application,” J.
  • Microbiol. Methods, vol. 43, no. 1, pp. 3–31, Dec. 2000, doi: 10.1016/S0167-7012(00)00201-3.
  • 90. A. D. Dongare, R. R. Kharde, and A. D. Kachare, “Introduction to artificial neural network,” Int. J. Eng. Innov. Technol., vol. 2, no. 1, pp. 189–194, 2012.
  • 91. P. Dey, A. Sarkar, and A. K. Das, “Development of GEP and ANN model to predict the unsteady forced convection over a cylinder,” Neural Comput. Appl., vol. 27, no. 8, pp. 2537–2549, Nov. 2016, doi: 10.1007/s00521-015-2023-8.
  • 92. B. Maleki, B. Singh, H. Eamaeili, Y. K. Venkatesh, S. S. A. Talesh, and S. Seetharaman, “Transesterification of waste cooking oil to biodiesel by walnut shell/sawdust as a novel, low-cost and green heterogeneous catalyst: Optimization via RSM and ANN,” Ind. Crops Prod., vol. 193, p. 116261, Mar. 2023, doi: 10.1016/j.indcrop.2023.116261.
  • 93. A. G. R. Vaz, B. Elsinga, W. G. J. H. M. van Sark, and M. C. Brito, “An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands,” Renew. Energy, vol. 85, pp. 631–641, Jan. 2016, doi: 10.1016/j.renene.2015.06.061.
  • 94. R. J. Kuo, C. H. Chen, and Y. C. Hwang, “An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network,” Fuzzy Sets Syst., vol. 118, no. 1, pp. 21–45, Feb. 2001, doi: 10.1016/S0165-0114(98)00399-6.
  • 95. J. C. Fernández, L. B. Corrales, I. F. Benítez, and J. R. Núñez, “Fault Diagnosis of Combustion Engines in MTU 16VS4000-G81 Generator Sets Using Fuzzy Logic: An Approach to Normalize Specific Fuel Consumption,” 2022, pp. 17–29. doi: 10.1007/978-3-030-98457-1_2.
  • 96. C. W. Mohd Noor, R. Mamat, G. Najafi, M. H. Mat Yasin, C. K. Ihsan, and M. M. Noor, “Prediction of marine diesel engine performance by using artificial neural network model,” J. Mech. Eng. Sci., vol. 10, no. 1, pp. 1917–1930, Jun. 2016, doi: 10.15282/jmes.10.1.2016.15.0183.
  • 97. Keh-Kim Kee, Boung-Yew Lau Simon, and K.-H. Y. Renco, “Artificial neural network back-propagation based decision support system for ship fuel consumption prediction,” in 5th IET International Conference on Clean Energy and Technology (CEAT2018), 2018, pp. 13 (6 pp.)-13 (6 pp.). doi: 10.1049/cp.2018.1306.
  • 98. B. Panda and A. Ghoshal, “An ANN based switching network for optimally selected photovoltaic array with battery and supercapacitor to mitigate the effect of intermittent solar irradiance,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 3, pp. 5784–5811, Sep. 2022, doi: 10.1080/15567036.2022.2088897.
  • 99. J. Zou, Y. Han, and S.-S. So, “Overview of Artificial Neural Networks,” in Artificial Neural Networks. Methods in Molecular Biology, 2008, pp. 14–22. doi: 10.1007/978-1-60327-101-1_2.
  • 100. S. Al-Dahidi, J. Adeeb, O. Ayadi, M. Alrbai, and L. Al-Ghussain, “A feature transformation and extraction approach-based artificial neural network for an improved production prediction of grid-connected solar photovoltaic systems,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 4, pp. 9232–9254, Dec. 2022, doi: 10.1080/15567036.2022.2128475.
  • 101. Z. Yuan, J. Liu, Y. Liu, Y. Yuan, Q. Zhang, and Z. Li, “Fitting Analysis of Inland Ship Fuel Consumption Considering Navigation Status and Environmental Factors,” IEEE Access, vol. 8, pp. 187441–187454, 2020, doi: 10.1109/ ACCESS.2020.3030614.
  • 102. T. Cepowski and P. Chorab, “The Use of Artificial Neural Networks to Determine the Engine Power and Fuel Consumption of Modern Bulk Carriers, Tankers and Container Ships,” Energies, vol. 14, no. 16, p. 4827, Aug. 2021, doi: 10.3390/en14164827.
  • 103. Y. B. A. Farag and A. I. Ölçer, “The development of a ship performance model in varying operating conditions based on ANN and regression techniques,” Ocean Eng., vol. 198, p. 106972, Feb. 2020, doi: 10.1016/j.oceaneng.2020.106972.
  • 104. T. Zhou, Q. Hu, Z. Hu, and R. Zhen, “An adaptive hyper parameter tuning model for ship fuel consumption prediction under complex maritime environments,” J. Ocean Eng. Sci., vol. 7, no. 3, pp. 255–263, Jun. 2022, doi: 10.1016/j.joes.2021.08.007.
  • 105. W. Tarelko and K. Rudzki, “Applying artificial neural networks for modelling ship speed and fuel consumption,” Neural Computing and Applications, vol. 32, no. 23. 2020. doi: 10.1007/s00521-020-05111-2.
  • 106. A. Coraddu, L. Oneto, F. Baldi, and D. Anguita, “Vessels fuel consumption forecast and trim optimisation: A data analytics perspective,” Ocean Engineering. 2017. doi: 10.1016/j.oceaneng.2016.11.058.
  • 107. L. T. Leifsson, H. Sævarsdóttir, S. T. Sigurdsson, and A. Vésteinsson, “Grey-box modeling of an ocean vessel for operational optimization,” Simul. Model. Pract. Theory, 2008, doi: 10.1016/j.simpat.2008.03.006.
  • 108. L. Ljung, “Black-box models from input-output measurements,” 2001. doi: 10.1109/imtc.2001.928802.
  • 109. L. Yang, G. Chen, N. G. M. Rytter, J. Zhao, and D. Yang, “A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping,” Ann. Oper. Res., 2019, doi: 10.1007/s10479-019-03183-5.
  • 110. F. Baldi, Modelling, analysis and optimisation of ship energy systems. Chalmers University of Technology, 2016.
  • 111. C. Gkerekos and I. Lazakis, “A novel, data-driven heuristic framework for vessel weather routing,” Ocean Eng., vol. 197, p. 106887, Feb. 2020, doi: 10.1016/j.oceaneng.2019.106887.
  • 112. R. Lu, O. Turan, E. Boulougouris, C. Banks, and A. Incecik, “A semi-empirical ship operational performance prediction model for voyage optimization towards energy efficient shipping,” Ocean Eng., vol. 110, 2015, doi: 10.1016/j. oceaneng.2015.07.042.
  • 113. F. Tillig, J. W. Ringsberg, W. Mao, and B. Ramne, “A generic energy systems model for efficient ship design and operation,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 231, no. 2, 2017, doi: 10.1177/1475090216680672.
  • 114. B. P. Pedersen and J. Larsen, “Modeling of Ship Propulsion Performance,” World Marit. Technol. Conf., 2009.
  • 115. B. P. Pedersen and J. Larsen, “Prediction of full-scale propulsion power using artificial neural networks,” Proc. 8th Int. Conf. Comput. IT Appl. Marit. Ind., pp. 537–550, 2009.
  • 116. J. P. Petersen, D. J. Jacobsen, and O. Winther, “Statistical modelling for ship propulsion efficiency,” J. Mar. Sci. Technol., 2012, doi: 10.1007/s00773-011-0151-0.
  • 117. E. Bal Beşikçi, O. Arslan, O. Turan, and A. I. Ölçer, “An artificial neural network based decision support system for energy efficient ship operations,” Comput. Oper. Res., 2016, doi: 10.1016/j.cor.2015.04.004.
  • 118. K. Rudzki and W. Tarelko, “A decision-making system supporting selection of commanded outputs for a ship’s propulsion system with a controllable pitch propeller,” Ocean Eng., 2016, doi: 10.1016/j.oceaneng.2016.09.018.
  • 119. J. P. Petersen, O. Winther, and D. J. Jacobsen, “A MachineLearning Approach to Predict Main Energy Consumption under Realistic Operational Conditions,” Sh. Technol. Res., vol. 59, no. 1, pp. 64–72, Jan. 2012, doi: 10.1179/ str.2012.59.1.007.
  • 120. B. P. Pedersen and J. Larsen, “Gaussian Process Regression for Vessel Performance Monitoring,” Compit, 2013.
  • 121. Journée, J. M. J., Rijke, R. J., Verleg, and G. J. H., “Marine performance surveillance with a personal computer,” Delft, Netherlands Delft Univ. Technol., 1987.
  • 122. X. Wang, Z. Zou, L. Yu, and W. Cai, “System identification modeling of ship manoeuvring motion in 4 degrees of freedom based on support vector machines,” China Ocean Eng., vol. 29, no. 4, pp. 519–534, Jun. 2015, doi: 10.1007/ s13344-015-0036-9.
  • 123. L. Þ. Leifsson, H. Sævarsdóttir, S. Þ. Sigurðsson, and A. Vésteinsson, “Grey-box modeling of an ocean vessel for operational optimization,” Simul. Model. Pract. Theory, vol. 16, no. 8, pp. 923–932, Sep. 2008, doi: 10.1016/j. simpat.2008.03.006.
  • 124. C.-K. Lin and H.-J. Shaw, “Preliminary parametric estimation of steel weight for new ships,” J. Mar. Sci. Technol., vol. 21, no. 2, pp. 227–239, Jun. 2016, doi: 10.1007/ s00773-015-0345-y.
  • 125. Q. Meng, Y. Du, and Y. Wang, “Shipping log data based container ship fuel efficiency modeling,” Transp. Res. Part B Methodol., 2016, doi: 10.1016/j.trb.2015.11.007.
  • 126. L. Chen, P. Yang, S. Li, Y. Tian, G. Liu, and G. Hao, “Greybox identification modeling of ship maneuvering motion based on LS-SVM,” Ocean Eng., vol. 266, p. 112957, Dec. 2022, doi: 10.1016/j.oceaneng.2022.112957.
  • 127. L. G. Aldous, “Ship operational efficiency: performance models and uncertainty analysis.” UCL (University College London), 2016.
  • 128. S. K. Paul, S. Asian, M. Goh, and S. A. Torabi, “Managing sudden transportation disruptions in supply chains under delivery delay and quantity loss,” Ann. Oper. Res., 2019, doi: 10.1007/s10479-017-2684-z.
  • 129. A. Rezaei Somarin, S. Chen, S. Asian, and D. Z. W. Wang, “A heuristic stock allocation rule for repairable service parts,” Int. J. Prod. Econ., 2017, doi: 10.1016/j. ijpe.2016.11.013.
  • 130. C. G. Moles, P. Mendes, and J. R. Banga, “Parameter estimation in biochemical pathways: A comparison of global optimization methods,” Genome Research. 2003. doi: 10.1101/gr.1262503.
  • 131. M. Schwaab, E. C. Biscaia, J. L. Monteiro, and J. C. Pinto, “Nonlinear parameter estimation through particle swarm optimization,” Chem. Eng. Sci., 2008, doi: 10.1016/j. ces.2007.11.024.
  • 132. I. Veza et al., “Multi-objective optimization of diesel engine performance and emission using grasshopper optimization algorithm,” Fuel, vol. 323, p. 124303, Sep. 2022, doi: 10.1016/j.fuel.2022.124303.
  • 133. I. Veza et al., “Grasshopper optimization algorithm for diesel engine fuelled with ethanol-biodiesel-diesel blends,” Case Stud. Therm. Eng., vol. 31, p. 101817, Mar. 2022, doi: 10.1016/j.csite.2022.101817.
  • 134. H. Orouji, O. B. Haddad, E. Fallah-Mehdipour, and M. A. Mariño, “Estimation of Muskingum parameter by metaheuristic algorithms,” Proc. Inst. Civ. Eng. Water Manag., 2013, doi: 10.1680/wama.11.00068.
  • 135. D. F. Alam, D. A. Yousri, and M. B. Eteiba, “Flower Pollination Algorithm based solar PV parameter estimation,” Energy Convers. Manag., 2015, doi: 10.1016/j. enconman.2015.05.074.
  • 136. H. Lee, N. Aydin, Y. Choi, S. Lekhavat, and Z. Irani, “A decision support system for vessel speed decision in maritime logistics using weather archive big data,” Comput. Oper. Res., vol. 98, pp. 330–342, Oct. 2018, doi: 10.1016/j. cor.2017.06.005.
  • 137. K. Fagerholt, “A computer-based decision support system for vessel fleet scheduling—experience and future research,” Decis. Support Syst., vol. 37, no. 1, pp. 35–47, 2004.
  • 138. M. H. Shamsi, U. Ali, E. Mangina, and J. O’Donnell, “A framework for uncertainty quantification in building heat demand simulations using reduced-order grey-box energy models,” Appl. Energy, vol. 275, p. 115141, Oct. 2020, doi: 10.1016/j.apenergy.2020.115141.
  • 139. O. Loyola-Gonzalez, “Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View,” IEEE Access, vol. 7, pp. 154096– 154113, 2019, doi: 10.1109/ACCESS.2019.2949286.
  • 140. M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning,” in 2019 IEEE Symposium on Security and Privacy (SP), May 2019, pp. 739–753. doi: 10.1109/ SP.2019.00065.
  • 141. Y.-Y. Zhang, Z.-H. Wang, and Z.-J. Zou, “Black-box modeling of ship maneuvering motion based on multioutput nu-support vector regression with random excitation signal,” Ocean Eng., vol. 257, p. 111279, 2022.
  • 142. N. Asproulis and D. Drikakis, “An artificial neural network-based multiscale method for hybrid atomisticcontinuum simulations,” Microfluid. Nanofluidics, 2013, doi: 10.1007/s10404-013-1154-4.
  • 143. N. Asproulis and D. Drikakis, “Nanoscale materials modelling using neural networks,” J. Comput. Theor. Nanosci., vol. 6, no. 3, pp. 514–518, 2009.
  • 144. G. Rajchakit, A. Pratap, R. Raja, J. Cao, J. Alzabut, and C. Huang, “Hybrid control scheme for projective lag synchronization of Riemann-Liouville sense fractional order memristive BAM neural networks with mixed delays,” Mathematics, 2019, doi: 10.3390/math7080759.
  • 145. G. Rajchakit, P. Chanthorn, P. Kaewmesri, R. Sriraman, and C. P. Lim, “Global mittag-leffler stability and stabilization analysis of fractional-order quaternion-valued memristive neural networks,” Mathematics, 2020, doi: 10.3390/math8030422.
  • 146. P. Niamsup, M. Rajchakit, and G. Rajchakit, “Guaranteed cost control for switched recurrent neural networks with interval time-varying delay,” J. Inequalities Appl., 2013, doi: 10.1186/1029-242X-2013-292.
  • 147. H. Zhang, W. Xiong, R. Zhang, and H. Su, “Prediction of gas consumption based on LSTM-BPNN hybrid model,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 4, pp. 10665–10680, Dec. 2022, doi: 10.1080/15567036.2022.2157520.
  • 148. A. Radonjić, D. Pjevčević, and V. Maraš, “Neural Network Ensemble Approach to Pushed Convoys Dispatching Problems,” Polish Marit. Res., vol. 27, no. 1, 2020, doi: 10.2478/pomr-2020-0008.
  • 149. L. Pan, “Exploration and Mining Learning Robot of Autonomous Marine Resources Based on Adaptive Neural Network Controller,” Polish Marit. Res., 2018, doi: 10.2478/ pomr-2018-0115.
  • 150. L. Qiang, Y. Bing-Dong, and H. Bi-Guang, “Calculation and Measurement of Tide Height for the Navigation of Ship at High Tide Using Artificial Neural Network,” Polish Marit. Res., 2018, doi: 10.2478/pomr-2018-0118.
  • 151. E. Bal Beşikçi, O. Arslan, O. Turan, and A. I. Ölçer, “An artificial neural network based decision support system for energy efficient ship operations,” Comput. Oper. Res., vol. 66, pp. 393–401, Feb. 2016, doi: 10.1016/j.cor.2015.04.004.
  • 152. K. Wang, X. Yan, Y. Yuan, and F. Li, “Real-time optimization of ship energy efficiency based on the prediction technology of working condition,” Transp. Res. Part D Transp. Environ., vol. 46, pp. 81–93, Jul. 2016, doi: 10.1016/j.trd.2016.03.014.
  • 153. O. Arslan, E. Besikci, and A. Olcer, “Improving energy efficiency of ships through optimisation of ship operations,” No. FY2014-3 IAMU, 2014.
  • 154. K. Rudzki, “Two-objective optimization of engine ship propulsion settings with controllable pitch propeller using artificial neural networks,” Gdynia Maritime University, 2014.
  • 155. Z. Said et al., “Application of novel framework based on ensemble boosted regression trees and Gaussian process regression in modelling thermal performance of small-scale Organic Rankine Cycle (ORC) using hybrid nanofluid,” J. Clean. Prod., vol. 360, p. 132194, Aug. 2022, doi: 10.1016/j. jclepro.2022.132194.
  • 156. G. Li, H. Zhang, B. Kawan, H. Wang, O. L. Osen, and A. Styve, “Analysis and modeling of sensor data for ship motion prediction,” 2016. doi: 10.1109/OCEANSAP.2016.7485648.
  • 157. L. P. Perera and B. Mo, “Marine Engine Operating Regions under Principal Component Analysis to evaluate Ship Performance and Navigation Behavior,” IFACPapersOnLine, 2016, doi: 10.1016/j.ifacol.2016.10.487.
  • 158. L. P. Perera and B. Mo, “Data compression of ship performance and navigation information under deep learning,” 2016. doi: 10.1115/OMAE2016-54093.
  • 159. M. Q. Yuquan D, “Models for ship fuel efficiency with applications to in-service ship fuel consumption management,” National University of Singapore, 2016.
  • 160. W. Y. Du Y, Meng Q, “Artificial neural network models for ship fuel efficiency with applications to in-service ship fuel consumption management,” 2016.
  • 161. Y. Zhu, Y. Zuo, and T. Li, “Predicting Ship Fuel Consumption based on LSTM Neural Network,” in 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), Nov. 2020, pp. 310–313. doi: 10.1109/ICCSS52145.2020.9336914.
  • 162. M. Chaal, “Ship operational performance modelling for voyage optimization through fuel consumption minimization,” 2018.
  • 163. K. Rudzki, P. Gomulka, and A. T. Hoang, “Optimization Model to Manage Ship Fuel Consumption and Navigation Time,” Polish Marit. Res., vol. 29, no. 3, pp. 141–153, Sep. 2022, doi: 10.2478/pomr-2022-0034.
  • 164. P. R. Couser, A. P. Mason, G. Mason, C. R. Smith, and B. R. Von Konsky, “Artificial Neural Networks for Hull Resistance Prediction,” 2004.
  • 165. K. Grabowska and P. Szczuko, “Ship resistance prediction with Artificial Neural Networks,” in 2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2015, pp. 168–173.
  • 166. C. M. Bishop, Neural networks for pattern recognition. Oxford university press, 1995.
  • 167. A. P. Mason, P. R. Couser, G. Mason, C. R. Smith, and B. R. Von Konsky, “Optimisation of Vessel Resistance using Genetic Algorithms and Artificial Neural Networks,” Compit 05, 2005.
  • 168. J. Holtrop and G. G. J. Mennen, “APPROXIMATE POWER PREDICTION METHOD.,” 1982. doi: 10.3233/ isp-1982-2933501.
  • 169. L. T. Le, G. Lee, K.-S. Park, and H. Kim, “Neural networkbased fuel consumption estimation for container ships in Korea,” Marit. Policy Manag., vol. 47, no. 5, pp. 615–632, Jul. 2020, doi: 10.1080/03088839.2020.1729437.
  • 170. I. Ortigosa, R. Lopez, and J. Garcia, “A neural networks approach to residuary resistance of sailing yachts prediction,” in Proceedings of the international conference on marine engineering MARINE, 2007, vol. 2007, p. 250.
  • 171. I. Ortigosa, R. López, and J. García, “Prediction of total resistance coefficients using neural networks,” J. Marit. Res., vol. 6, no. 3, pp. 15–26, 2009.
  • 172. G. Zhang, V. V. Thai, K. F. Yuen, H. S. Loh, and Q. Zhou, “Addressing the epistemic uncertainty in maritime accidents modelling using Bayesian network with interval probabilities,” Saf. Sci., vol. 102, pp. 211–225, Feb. 2018, doi: 10.1016/j.ssci.2017.10.016.
  • 173. Q. Zhou, Y. D. Wong, H. S. Loh, and K. F. Yuen, “A fuzzy and Bayesian network CREAM model for human reliability analysis – The case of tanker shipping,” Saf. Sci., vol. 105, pp. 149–157, Jun. 2018, doi: 10.1016/j.ssci.2018.02.011.
  • 174. Q. Zhou, Y. D. Wong, H. S. Loh, and K. F. Yuen, “ANFIS model for assessing near-miss risk during tanker shipping voyages,” Marit. Policy Manag., vol. 46, no. 4, pp. 377–393, May 2019, doi: 10.1080/03088839.2019.1569765.
  • 175. J. Tran et al., “Systematic review and content analysis of Australian health care substitute decision making online resources,” Aust. Heal. Rev., vol. 45, no. 3, pp. 317–327, Jan. 2021, doi: 10.1071/AH20070.
  • 176. C. Sun, H. Wang, C. Liu, and Y. Zhao, “Dynamic Prediction and Optimization of Energy Efficiency Operational Index (EEOI) for an Operating Ship in Varying Environments,” J. Mar. Sci. Eng., vol. 7, no. 11, p. 402, Nov. 2019, doi: 10.3390/ jmse7110402.
  • 177. Y.-R. Kim, M. Jung, and J.-B. Park, “Development of a Fuel Consumption Prediction Model Based on Machine Learning Using Ship In-Service Data,” J. Mar. Sci. Eng., vol. 9, no. 2, p. 137, Jan. 2021, doi: 10.3390/jmse9020137.
  • 178. L. Moreira, R. Vettor, and C. Guedes Soares, “Neural Network Approach for Predicting Ship Speed and Fuel Consumption,” J. Mar. Sci. Eng., vol. 9, no. 2, p. 119, Jan. 2021, doi: 10.3390/jmse9020119.
  • 179. P. Karagiannidis, N. Themelis, G. Zaraphonitis, C. Spandonidis, and C. Giordamlis, “Ship fuel consumption prediction using artificial neural networks,” in Proceedings of the Annual meeting of marine technology conference proceedings, Athens, Greece, 2019, pp. 46–51.
  • 180. Z. Hu, Y. Jin, Q. Hu, S. Sen, T. Zhou, and M. T. Osman, “Prediction of Fuel Consumption for Enroute Ship Based on Machine Learning,” IEEE Access, vol. 7, pp. 119497–119505, 2019, doi: 10.1109/ACCESS.2019.2933630.
  • 181. R. Ye and J. Xu, “Vessel fuel consumption model based on neural network,” Sh. Eng., vol. 38, no. 3, pp. 85–88, 2016.
  • 182. Z. Wang and S. Chen, “Real-time Forecast of Fuel Consumption of Ship Main Engine Based on LSTM Neural Network [J],” J. Wuhan Univ. Technol. (Transportation Sci. Eng., vol. 44, no. 05, pp. 923–927, 2020.
  • 183. L. Bui-Duy and N. Vu-Thi-Minh, “Utilization of a deep learning-based fuel consumption model in choosing a liner shipping route for container ships in Asia,” Asian J. Shipp. Logist., vol. 37, no. 1, pp. 1–11, Mar. 2021, doi: 10.1016/j. ajsl.2020.04.003.
  • 184. X. Q. Shen, S. Z. Wang, T. Xu, C. J. Shi, and B. X. Ji, “Ship Fuel Consumption Prediction under Various Weather Condition Based on DBN,” in Safety of Sea Transportation, CRC Press, 2017, pp. 69–74. doi: 10.1201/9781315099088-11.
  • 185. S. Wang, B. Ji, J. Zhao, W. Liu, and T. Xu, “Predicting ship fuel consumption based on LASSO regression,” Transp. Res. Part D Transp. Environ., vol. 65, pp. 817–824, Dec. 2018, doi: 10.1016/j.trd.2017.09.014.
  • 186. V. D. Bui and H. P. Nguyen, “A Comprehensive Review on Big Data-Based Potential Applications in Marine Shipping Management,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 3, pp. 1067–1077, Jun. 2021, doi: 10.18517/ijaseit.11.3.15350.
  • 187. Z. H. Munim, M. Dushenko, V. J. Jimenez, M. H. Shakil, and M. Imset, “Big data and artificial intelligence in the maritime industry: a bibliometric review and future research directions,” Marit. Policy Manag., vol. 47, no. 5, pp. 577–597, Jul. 2020, doi: 10.1080/03088839.2020.1788731.
  • 188. H. P. Nguyen, P. Q. P. Nguyen, and V. D. Bui, “Applications of Big Data Analytics in Traffic Management in Intelligent Transportation Systems,” JOIV Int. J. Informatics Vis., vol. 6, no. 1–2, pp. 177–187, May 2022, doi: 10.30630/ joiv.6.1-2.882.
  • 189. A. Fan, Z. Wang, L. Yang, J. Wang, and N. Vladimir, “Multistage decision-making method for ship speed optimisation considering inland navigational environment,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 235, no. 2, pp. 372–382, May 2021, doi: 10.1177/1475090220982414.
  • 190. A. V. Goodchild and C. F. Daganzo, “Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations,” Transp. Sci., vol. 40, no. 4, pp. 473–483, Nov. 2006, doi: 10.1287/trsc.1060.0148.
  • 191. R. Adland, P. Cariou, H. Jia, and F.-C. Wolff, “The energy efficiency effects of periodic ship hull cleaning,” J. Clean. Prod., vol. 178, pp. 1–13, Mar. 2018, doi: 10.1016/j. jclepro.2017.12.247.
  • 192. A. Farkas, N. Degiuli, I. Martić, and M. Vujanović, “Greenhouse gas emissions reduction potential by using antifouling coatings in a maritime transport industry,” J. Clean. Prod., vol. 295, p. 126428, May 2021, doi: 10.1016/j. jclepro.2021.126428.
  • 193. Y. Zhu, Y. Zuo, and T. Li, “Modeling of Ship Fuel Consumption Based on Multisource and Heterogeneous Data: Case Study of Passenger Ship,” J. Mar. Sci. Eng., vol. 9, no. 3, p. 273, Mar. 2021, doi: 10.3390/jmse9030273.
  • 194. Y. Man, T. Sturm, M. Lundh, and S. N. MacKinnon, “From Ethnographic Research to Big Data Analytics—A Case of Maritime Energy-Efficiency Optimization,” Appl. Sci., vol. 10, no. 6, p. 2134, Mar. 2020, doi: 10.3390/app10062134.
  • 195. Ø. J. Rødseth, L. P. Perera, and B. Mo, “Big data in shipping-Challenges and opportunities,” 2016.
  • 196. J. L. and Y. N. M. Jeon, “A study on big data technology and collection, processing and analysis method for ship,” in The Korean Society of Mechanical Engineers Annual Conference, Korea, pp. 3083–3085.
  • 197. T. Varelas and S. Plitsos, “Real-Time Ship Management through the Lens of Big Data,” in 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService), 2020, pp. 142–147.
  • 198. T. Anan, H. Higuchi, and N. Hamada, “New artificial intelligence technology improving fuel efficiency and reducing CO2 emissions of ships through use of operational big data,” Fujitsu Sci. Tech. J, vol. 53, no. 6, pp. 23–28, 2017.
  • 199. B. Mishachandar and S. Vairamuthu, “Diverse ocean noise classification using deep learning,” Appl. Acoust., vol. 181, p. 108141, Oct. 2021, doi: 10.1016/j.apacoust.2021.108141.
  • 200. H. P. Nguyen, P. Q. P. Nguyen, D. K. P. Nguyen, V. D. Bui, and D. T. Nguyen, “Application of IoT Technologies in Seaport Management,” JOIV Int. J. Informatics Vis., vol. 7, no. 1, p. 228, Mar. 2023, doi: 10.30630/joiv.7.1.1697.
  • 201. J. Chen, “IOT Monitoring System for Ship Operation Management Based on YOLOv3 Algorithm,” J. Control Sci. Eng., vol. 2022, pp. 1–7, Jun. 2022, doi: 10.1155/2022/2408550.
  • 202. C. Wang, J. Shen, P. Vijayakumar, and B. B. Gupta, “Attribute-Based Secure Data Aggregation for Isolated IoT-Enabled Maritime Transportation Systems,” IEEE Trans. Intell. Transp. Syst., pp. 1–10, 2021, doi: 10.1109/ TITS.2021.3127436.
  • 203. L. P. Perera and B. Mo, “Machine intelligence based data handling framework for ship energy efficiency,” IEEE Trans. Veh. Technol., 2017, doi: 10.1109/TVT.2017.2701501.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-def47b95-bff1-4322-bc76-69c593d38e2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.