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AbstrAct

In marine vessel operations, fuel costs are major operating costs which affect the overall profitability of the maritime 
transport industry. The effective enhancement of using ship fuel will increase ship operation efficiency. Since ship fuel 
consumption depends on different factors, such as weather, cruising condition, cargo load, and engine condition, it 
is difficult to assess the fuel consumption pattern for various types of ships. Most traditional statistical methods do 
not consider these factors when predicting marine vessel fuel consumption. With technological development, different 
statistical models have been developed for estimating fuel consumption patterns based on ship data. Artificial Neural 
Networks (ANN) are some of the most effective artificial methods for modelling and validating marine vessel fuel 
consumption. The application of ANN in maritime transport improves the accuracy of the regression models developed 
for analysing interactive relationships between various factors. The present review sheds light on consolidating the 
works carried out in predicting ship fuel consumption using ANN, with an emphasis on topics such as ANN structure, 
application and prediction algorithms. Future research directions are also proposed and the present review can be a 
benchmark for mathematical modelling of ship fuel consumption using ANN.
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INTRODUCTION

In recent years, the maritime transport sector and maritime 
activities, such as container depots and port activities, have 
experienced a rise in greenhouse gas (GHG) emissions [1], 
[2]. This rise can be correlated with the increasing trend in 
shipping vessel fossil fuel consumption [3]–[5] and serious 
environmental pollution, including oil spillage [6]–[8]. 
Consequently, these significant increases in GHG emissions 
due to the use of fossil fuels are thought to further exacerbate 
the rise in global average temperature and potentially 
irreversible ecological impacts related to climate change [9], 

[10]. Given the fact that a major portion of global cargo is 
carried by ships, improving the overall energy efficiency of 
marine transport promises to yield positive results, in terms 
of GHG emissions relating to fuel consumption [11]–[13]. 
According to the 2019 data published by the International 
Maritime Organisation (IMO), emissions from maritime 
transportation accounts for 2.5% of global GHG emissions. 
The emissions of these various heat-trapping gases are known 
to be the main driver behind anthropogenic global warming 
and changes in global weather patterns, yielding potentially 
harmful effects on the Earth’s ecological systems and human 
society [14]–[16]. As the main international regulatory body of 
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maritime shipping activities, the IMO has developed the Ship 
Energy Efficiency Management Plan (SEEMP) and Energy 
Efficiency Design Index (EEDI) as two crucial measures 
aimed at lowering GHG emissions and curbing environmental 
pollution through the more efficient use of fuels in marine 
vessels [17]–[22]. 

Consequently, lower emissions of common air pollutants 
from ships, such as sulphur oxide (SOx) and nitrogen 
oxide (NOx), as well as major GHG were observed with the 
introduction of these regulations [23], [24]. Considering 
the direct relationship between fossil fuel consumption 
and GHG emissions, several studies have explored different 
strategies to deliver more efficient ship operations, such as 
hull cleaning and design [25]–[28], and the incorporation of 
renewable energy sources including wind energy [29]–[31], 
solar energy [32]–[35], wave energy [36], [37], and fuel cells 
[38], [39]. Ship energy management plans provide critical 
inputs for the continuous monitoring and analysis of marine 
vessel performance by taking the design and operational 
measures into account [40]–[42]. Data-driven performance 
monitoring provides an effective solution to holistic system 
management including real-time decision making, assessment 
and evaluation, and cost-effective resource management 
[43], [44]. Other factors driving the need for better energy 
efficiency management on marine vessels stem from 
economics, compliance, and stakeholder requirements [45], 
[46]. A ship’s energy consumption accounts for a significant 
portion of its operating costs [47]. It has been observed that 
up to two-thirds of shipping costs and one-quarter of total 
operating costs depend on fuel consumption [48], [49]. Hence, 
predicting fuel consumption and energy inputs provides a 
good measurement of energy efficiency management within 
marine transport [50], [51]. Besides these proposed strategies, 
estimation models have been proved effective in identifying 
the key variables that influence fuel consumption [52], [53]. 
The availability of estimation models not only provides the 
total system recognition, but also enhances the capability of 
monitoring operating conditions and forecasting potential 
malfunctions [54]–[56]. In general, the characteristics and 

application of prediction models for ship fuel consumption 
are illustrated in Fig. 1.

Since fuel costs account for the largest portion of ship 
operating costs [58], better fuel consumption also means 
higher energy efficiency and greater profitability for the 
marine vessel’s owner [59]. Therefore, accurately predicting 
the rate of fuel consumption is a challenging task because 
there are several external influencing factors. Access to 
the estimation model has yielded key advantages for fleet 
owners and companies when optimising fuel consumption 
and operational costs, by efficiently tracking and analysing 
the key parameters [60], [61]. Considering these facts, 
computer-assisted tools would be more appropriate for 
assisting decision-making [62]. There are several statistical 
techniques, algorithms, and artificial intelligence methods 
that are commonly used, and these include polynomial 
regression (PR), support vector machine (SVM), fuzzy logic, 
artificial neural network (ANN), and other algorithms [63]–
[65]. Among these, PR is the most popular method and it 
uses polynomial functions to approximate data points. One 
of the advantages of this method is its simplicity and a high 
degree of flexibility when applied to a general dataset. In 
the marine transport and shipping industry, PR is typically 
used to analyse the hull-propeller’s performance loss and 
reconstruct ship trajectories for automatic identification 
system data [64]. On the other hand, SVM has gained 
special interest among the machine learning tools used in 
classification and regression models. The main objective of 
SVM is to map input vectors to a higher dimensional space, 
in which an optimal discriminant hyperplane is constructed. 
The use of kernel functions is relevant in mapping input data. 
Within SVM, the ship detection images are divided into small 
blocks of pixels [66] that can be categorised, based on colour 
and texture. Using regression models, outliers can then be 
identified, polluted ship tracks can be regressed [67] and a 
ship’s motion can be predicted [63]. The strong preference 
for this technique over other learning methods stems from 
better generalisation that could alleviate overfitting problems.

Grounded in mathematical models, these tools make 

Fig.  1. Topology of models for predicting ship fuel consumption [57]
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the connection between the input variables, such as fuel 
consumption and estimated travel time to the destination, 
and the outputs, based on command and current operational 
conditions related to the ship propulsion thrust [68]. In 
analysing bibliographic references relating to the various 
techniques of displaying the commanded outputs, Rudzki 
et al. [69] revealed the inadequacy of the present models 
that formalise the required heuristic knowledge. According 
to the authors, the use of ANNs could be applied to attain 
such models with better predictive power, concerning 
the estimation of ship fuel consumption and travel time 
to the destination, for given commanded outputs and 
operational parameters. ANN is a better approach due to 
its better accuracy and capability when being applied in 
practice. In this scenario, the absence of the requirement 
of mathematical relations between the input and output 
data gives the ANN technique a key advantage [70]. As a 
subset of artificial intelligence, ANN enables systems to learn 
from previous experience and available historical data, and 
improve on current conditions [71]. Based on recorded system 
performance, system conditions could then be assessed and 
further improved upon [72]. First, a model algorithm is run 
(training mode) on a partial set of data before being fully 
examined (testing mode) with a full set of data. By combining 
advanced statistical methods, realistic estimation models can 
be formulated by applying the train-test process based on 
the ANN algorithms. Estimating a vessel’s fuel consumption 
with minimal error rates could be useful, while providing 
ship operators with important insights. For these reasons, 
ANN is an integral instrument in managing marine vessel 
operations and energy efficiency [73]. Therefore, the current 
work reviewed a data analysis framework based on ANN 
used to predict ship fuel consumption. In addition, the use of 
ANN to derive a regression model for ship fuel consumption, 
as well as the performance and accuracy of ANN, were also 
thoroughly analysed through various inputs and outputs of 
the ANN model.

ANN STRUCTURE

Machine learning (ML) is a subfield of artificial intelligence 
that uses algorithms and statistical models to allow computer 
systems to improve their performance on a given job by 
learning from data, without being explicitly programmed 
[74]. The objective of machine learning is to create algorithms 
that can recognise patterns in data and utilise those patterns 
to make predictions or conduct actions [75], [76]. ANNs are a 
type of machine learning algorithm inspired by the anatomy 
and functioning of the human brain. ANNs are made up of 
linked layers of nodes, or neurons, which process information 
and transmit it on to other neurons to be processed [78-79]. 
ANNs are utilised in a range of applications, including picture 
and speech recognition, natural language processing, and 
financial market prediction [79]–[83]. ANNs are a form of 
supervised learning algorithm that, with training, can learn 
to recognise patterns in data. During training, the ANN 

is given a set of inputs as well as the desired outputs [84]. 
To minimise the difference between the actual output and 
the required output, the ANN modifies the strength of the 
connections between its neurons. Once trained, the ANN can 
be used to make forecasts on previously unknown data [85].

ANNs have proven to be extremely effective in a wide 
range of machine learning tasks, particularly those involving 
enormous volumes of data. ANNs are highly versatile and 
can be used to solve a wide range of problems; they are a 
strong tool for solving a wide range of challenging issues in 
machine learning and artificial intelligence [86]–[88]. ANNs 
can, on the other hand, be difficult to train and demand a 
large amount of computer power, particularly for deep neural 
networks with many layers [89]. ANNs are constructed from 
a collection of small computational units, known as neurons, 
organised into layers. The neurons in one layer communicate 
with the neurons in the next layer, establishing a network 
which is capable of processing complicated information. Each 
neuron in an ANN gets input from neurons in the previous 
layer, analyses that information, and generates an output 
signal that is sent to neurons in the following layer [90]. Each 
neuron processes its inputs by computing a weighted sum, 
adding a bias term, and sending the result via a nonlinear 
activation function. ANNs can simulate complicated 
nonlinear interactions between inputs and outputs using 
this nonlinear activation function [91][92]. A neuron’s basic 
mathematical operation can be described as [80]:

                         (1)

Herein, y denotes the total of all inputs f is the activation 
function, w is the weight associated with each input x, b is 
the bias term, and Σ  denotes the total of all inputs.

During training, the weights and biases of an ANN are 
modified to minimise a cost function that assesses the 
difference between the network’s expected and intended 
outputs [93]. The weights and biases are commonly adjusted 
using a backpropagation method, which computes the gradient 
of the cost function with respect to the weights and biases 
and updates them in the direction of decreasing cost. ANNs 
have been shown to be extremely effective in applications 
involving vast amounts of data, such as deep learning [94]. 
In contrast to the simple linear regression method, which 
portrays the relationship between input and output variables 
with a single equation, fuzzy logic-based regression models 
rely on local functions and provide global approximations in 
a nonlinear relationship [95]. Consequently, local functions or 
membership functions are combined into a single expression. 
Besides this, fuzzy logic models have the capability to capture 
highly nonlinear and multidimensional interactions among 
the different factors. 

On the contrary, the application of ANN models offers 
key benefits, including a generalisation and extrapolation 
capability [96]. Furthermore, ANN models can be constructed 
without the prior knowledge of the type of function. These 
systems can be trained by a process called machine learning, 
through which the performance of simple tasks can be taught 
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and improved over time. There are several basic elements in 
ANNs, including processing elements (i.e. inputs, outputs, 
and weights) and activation (neuron/transfer) functions 
[98-99]. These components closely resemble the makeup 
of biological neurons which form the basis for the ANN 
[99]. After inputs are received from one end and processed/
summed, the outputs are generated on the other end of the 
artificial neuron. Within this process, the weight factor for 
each input is calculated according to the strength of the input 
signal [100]. The weighted sum of all inputs is processed via a 
nonlinear function, known as the activation linear function 
[101]. The activation function can take several forms, including 
sigmoid, nonlinear, piecewise linear, and step functions. 
These continuous and monotonically increasing functions are 
often differentiable and bounded. Based on these models, a 
computer-assisted decision support system can be constructed 
to select the ship driveline commanded output to deliver 
the optimal ship fuel consumption. Besides this, ship logs 
(which contain ship records such as managing events, ship 
operation and navigation information) are important sources 
of historical data which have been used in ANN models to 
estimate ship fuel consumption [102], [103]. 

In practice, the ship operators often rely on their 
knowledge, experience, and instinct when setting the 
appropriate values for the commanded outputs [104]. As stated 
earlier, it is impractical to choose one appropriate method 
that allows for the selection of commanded outputs, based 
on formalised heuristic knowledge. In certain situations, 
there is the potential that the chosen settings can be illogical 
and unsuitable [105]. To minimise the potential risk of such 
incidences, the availability of a decision support system (Fig.2) 
is highly desirable, in which the decision support system was 
constructed based on the following key parts:
•	 A data acquisition module containing several 

uncontrollable inputs and one output variable vector 
based on normalised ANN data;

•	 An identification module containing the input, based 
on the normalised ANN output values obtained from 
the prior module and one matrix-represented output 
capturing the internal data representation of the ANN 
used in the estimation of ship fuel consumption;

•	 An optimisation module containing two input and two 
output variables. The two-input data include: (i) the 
output from the preceding module in the form of ANN 
matrix data, and (ii) the vector value of the weight factors 

of the two-objective optimisation model. The two outputs 
correspond with the optimal commanded outputs. 

The available literature on ship fuel use estimation 
considers three commonly used models: white-box models 
(WBMs), black-box models (BBMs), and grey-box models 
(GBMs) [106], [107]. Based on prior knowledge of the system, 
a WBM relies on the physical understanding of a system, as 
well as its identifiable or known structure and parameters 
in the decision making [70,109]. On the contrary, the use 
of BBM occurs in the absence of a priori knowledge of the 
system when making output decisions based on a few key 
input data [107]. Researchers have found higher accuracy 
in well-trained BBMs, compared to WBMs. Nevertheless, 
the training of BBMs often necessitates the collection and 
input of large amounts of high-quality data [109]. BBMs also 
fail to provide interpretability and extrapolating capability 
compared to WBMs [110]. As reported, BBM (which includes 
Back Propagation Neural Network, Multilayer Perceptron 
Network, Long Short-term Memory, Convolutional Neural 
Network, and Deep Neural Network) performs well in terms 
of ship fuel consumption prediction [96,112]. GBM is a hybrid 
model constructed on the basis of the system’s underlying 
physical processes, while some parameters can be estimated 
using input data [70,109]. GBMs leverage the key advantages of 
the prior two modelling techniques [109]. Referencing several 
studies, Table 1 provides comparisons between WBMs, BBMs 
and GBMs, highlighting the advantages of GBMs over the 
other two methods. 

Even though the technique offers several important 
advantages, GBMs have not been very well studied in the 
estimation of ship fuel consumption. One of the reasons for 
the lack of research on GBMs in this context could be that 
the system is modelled as a piecewise function; whereas, the 
ship’s sailing motion provides the variables in determining 
the outcomes [122]. Hence, external environmental factors, 
such as changing wind direction and wave motion, strongly 
affect the vessel’s resistance. Traditional GBM used in 
the estimation of ship fuel consumption is based on a set 
of four sub-functions, accounting for each of the weather 
directions [123]. Besides the common parameters, there are 
also individual parameters for each of the sub-functions. 
Considering this fact, the use of derivative-based techniques, 
such as the Gauss–Newton algorithm and the Levenberg–
Marquardt algorithm, is insufficient for providing estimations 
of all common parameters together. To overcome this 
obstacle, researchers have come up with sequential parameter 
estimation procedures at the cost of global optimality [124]. 

Meng et al. [125] constructed a SPEP, in which the common 
parameters of the piecewise function were first estimated and 
then used as fixed variables in other sub-functions (i.e. bow 
sea, beam sea and following sea). Nevertheless, this approach 
has not been fully taken advantage of in the collected data. 
As shown in Fig. 3, only 25% of the data were utilised in 
the estimation of the common parameters in the sequential 
parameter estimation procedures. Furthermore, the lack 
of optimality in the estimation of the common parameters 
will affect the level of accuracy, when estimating the other 
parameters included in the remaining sub-functions. Fig.  2. Structure of decision support system block [105] 
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Hence, the use of GBMs in the current context of ship fuel 
consumption estimation is restricted, based on its quality and 
accuracy [126]. In an attempt to mitigate the shortcomings 
related to GBMs, a new genetic algorithm-based grey-box 
model (GA-based GBM) is presented as a possible method for 
estimating ship fuel consumption [109]. The present GA-based 
GBM approach differs from conventional GBMs, in that 100% 
of the collected data are used in the estimation of the common 
parameters, as shown in Fig. 3. The new approach also allows 
for the concurrent estimation of all common parameters of 
the GBM that further enhance the accuracy and reliability 
of the GBM. Studies by Coraddu et al. [106] and Aldous et 
al. [127] supported these conclusions. Nevertheless, due 
to the inclusion of piecewise structures in GBMs subject 
to the segregated weather directions, it is more difficult to 
estimate the parameters of GBMs. SPEP has been able to 
resolve this problem at the expense of the global optimality 
that inevitably affects the accuracy of GBMs in estimating 
ship fuel consumption.

Fig.  3.  Data utilisation of GBM based on existing SPEP (Left) and the 
proposed GA (Right) [109]

Previous studies have been successful in using heuristic 
and metaheuristic algorithms in solving highly complex 
problems [129,130]. These methods are potential solutions 
for the aforementioned problem while taking into account 
their flexibility. Among the available literature, applications 
of heuristic and metaheuristic methods in estimating 
parameters are found in complex (piecewise, nonlinear, etc.) 
models among various fields. Some examples include the 
study of evolutionary strategies of biochemical pathways 
[130], applications of particle swarm optimisation in chemical 
engineering [131], grasshopper optimization algorithm in 
engine area [132], [133], simulated annealing algorithms 
used in the Muskingum routing model [134], and a flower 
pollination algorithm for solar PV application [135]. Despite 
the prevalence of heuristic and metaheuristic algorithms in 
different fields, their use as the main tool in estimating the 
parameters in ship fuel consumption prediction models has 
remained relatively limited. They offer a new perspective in 
the current knowledge gap by proposing a GA-based GBM 

to be used in the estimation of parameters in the 
fuel ship consumption model. Compared to existing 
SPEP-based GBMs, these improved GA-based GBMs 
have several key advantages.

Furthermore, the GA-based GBM reflects higher 
reliability in capturing the relationship between ship 
fuel consumption rate and its determinants. These 
benefits further strengthen the model application 
in performing energy efficiency and sustainability 
analysis in the study of marine vessel operation. 
From an industrial perspective, the GA-based GBM 
presented in the current research can be integrated 
as part of the ship energy efficiency programs, to 
optimise ship fuel consumption and reduce GHG 
emissions, because of its better predictive capability. 

In the construction of the decision support system, 
it was found that the following requirements are 

important: (i) state the input and variables related to the 

Methods Advantage Disadvantage References

WBM

- Obtained results and system behaviours 
can be interpreted and predicted.
- Data can be extrapolated in addition to 
the given data.
- Historical data are not required.

- Potential uncertainties and assumptions 
significantly affect the accuracy of 
predictions.
- Required prior knowledge.
- Low accuracy.

[109][112][106][113]

BBM - BBM has higher accuracy than WBM.
- Prior knowledge is not required.

- Historical data are required in large 
amounts.
- Model interpretability and extrapolation 
capacity are poor.
- Unreasonable results might be received.

[109][114][115][116]
[117][118][119][120]

GBM

- GBM has a higher accuracy than WBM.
- Less historical data is required for GBM 
compared to BBM and WBM.
-  High model interpretability.
- Unreasonable results might be avoided.

- Extrapolation capacity is not high. [109][121] 

Table 1. Characteristics of WBM, BBM and GBM applied for prediction of fuel consumption for ships
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ship driveline system models, (ii) construct models predicting 
ship fuel consumption and speed based on ANN; and (iii) 
construct a decision-making model based on multi-objective 
optimisation [65], [136], [137]. In the development of these 
models, a ship was identified as a solid object placed at the 
water-air boundary. Along with the partial immersion 
position and maintained relative motion, these factors enabled 
the selection of appropriate variables for both the black box 
and the decision-making models. Fig. 4 shows the problem 
captured in the ‘black box’ form, under the influence of several 
different factors [105].   

Fig.  4. ‘Black box’ model [105]

Fig. 4 shows that, in terms of decision-making variables 
(XDi), the two main selected variables were the combustion 
engine rotational speed and the CPP pitch. On the other hand, 
the uncontrollable input variables (XNj) were identified among 
a range of factors influencing the ship sailing motion [118]. 
These factors played an important role in the commanded 
outputs of the ship driveline system that determined the 
desired ship motion and speed via the propeller thrust. 
Last but not least, the model output variables are Yk, (the 
combustion engine fuel consumption) [105]. The other factors 
that were difficult to capture and had minimal variance (with 
respect to the ship’s motion) were denoted as Z or the model 
disturbances. In formulating the decision-making problem, 
the distinct variables contained in the black box model were 
considered. The main problem statement is to determine 
the values of the decision-making variables XDi subjected 
to the uncontrollable variables XNj in order to achieve the 
anticipated values of the output variables, Yk. The values 
obtained for the model output variables Yk make up the 
objectives for the optimisation function. The function is set up 
in order to minimise the ship’s fuel consumption. Taking into 
account the distinguished variables of the black box model, 
the decision-making problem can be formulated as follows: 
what should the values of the decision-making variables XDi 
be for the given values of the uncontrollable variables XNj, in 
order to provide the desired values of the output variables, Yk.

Researchers have constructed models using GBMs, which 
integrate both partial theoretical structure and input data 
[138]. WBMs, also known as cause-effect models, can explain 
the relationship between the different variables and the 
studied phenomenon, as well as the underlying processes. 
To quantify these processes, equations were set up based 
on existing knowledge of the relationships. For dynamic 

systems, the balance method is the preferred method used in 
the construction of WBMs [140-141]. In addressing systems 
containing physical quantities, the balancing of parameters 
occurs for those that are subjected to the conservation law 
of momentum and energy. Despite the advantage of the 
balance method, it is impractical to rely on such a method 
when modelling both fuel consumption and ship sailing, in 
implementing a decision-making support model subjected 
to the commanded output of the ship driveline system. Due 
to the extraordinary complexity of the equations that are 
used in describing these relationships and processes, they 
are impossible to solve. Furthermore, the varying influence 
of several parameters over the processes and the studied 
phenomenon also complicate the problem. Even though these 
equations could be simplified in linear, parabolic or hyperbolic 
forms, the complexity of the studied processes does not allow 
for generalisation or linearisation procedures. Besides this, 
the results obtained from solving these equations through 
approximation, falls short of being useful in practice. Given 
these reasons, the need for alternative modelling techniques 
is highly warranted. In particular, the use of the BBM method 
could provide important insight into the existing relationships 
and fundamental processes. In contrast to the WBMs, the use 
of BBMs does not require the full analysis of the causes when 
understanding the studied phenomenon. In constructing 
this type of model, the necessary steps are carried out as 
follows: performing measurements; analysing the results and 
identifying the required parameters for the considered issue; 
examining the validity of the initial conditions; searching for 
a functional dependency or providing guesses based on the 
researcher’s instinct; fitting the function with the appropriate 
parameters; comparing the results of measurements and the 
fitted model [70-142]. In the case of non-conformity, one or 
several of the following steps or additional measurements 
can be conducted. Data collection is first carried out using 
actual measurements or historical records. By the rules of 
thumb, these data should be grouped into dependent (i.e. 
those to be estimated) and independent variables (i.e. those 
to be used in necessary conditions).  

ROLE OF ANN AND MACHINE 
LEARNING IN PREDICTING SHIP FUEL 

CONSUMPTION 
Among the recent advances in research, applications of 

ANN have been found in several fields, highlighting the 
latest developments [142]–[147], as well as issues related to 
the marine industry [148]–[150]. The method based on ANN is 
known to be a widely applied prediction model. Besikci et al. 
[151] employed the ANN model to predict fuel consumption 
by modelling the relationship between engine speed and the 
outside variables, aiming to predict the fuel consumption 
of a tanker. Wang et al. [152] used a wavelet neural network 
(WNN) to optimise the energy efficiency of a ship. By using 
this developed WNN, engine speed could reach the optimal 
value under various navigation environments and working 
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conditions; thus, energy efficiency and the ship’s sailing were 
optimised, resulting in optimised fuel consumption of the 
ship. Arslan et al. [153] and Bal et al. [117] developed decision 
support systems grounded in ANN prediction models. In 
these models, there were seven main input variables, including 
ship speed, main engine rotational speed, mean draft, trim, 
number of cargos, wind and sea conditions, as depicted in 
Fig. 5a. These parameters were used as the determinants 
in predicting the output variable, which was ship fuel 
consumption. The authors relied on ship noon reports to 
gather the ship’s main operating data. Both studies utilised 
the Neural Network Toolbox in MATLAB 2010a software to 
construct the neural network models. In terms of data set, 
they used data obtained from 7 tanker ships, respectively. 
70% of these data were randomly chosen for training, while 
the rest were utilised to validate the results. The main ANN 
modelling approach relied on the backpropagation algorithm, 
which performed learning on a feed-forward  neural 
network consisting of one hidden layer. In these studies, 
the main learning algorithm was Levenberg–Marquardt, in 
which hyperbolic tangent sigmoid transfer function was the 
activation function and the training epochs were limited to 
10,000. In comparison with the multiple regression model 
[118,154], the ANN model performed significantly better, 
based on the observed correlation of actual and predicted 
fuel consumption data in both training and validation data 
groups, as depicted in Fig. 5b and 5c.

Conventional statistical methods have been commonly 
used in modelling various phenomena. The study by Rudzki 
et al. [118] provided an assessment of the application of a 

statistical regression technique in modelling optimal 
parameters for the ship drive’s propulsion. Using multiple 
regression techniques, a BBM was developed for the decision-
making system considered and similar types of data were used 
in constructing the ANN models utilised in this case [154]. 
These data are key for explaining the relationship among 
the different operational parameters (i.e. related to ship 
propulsion thrust) and the fuel consumption and travel time 
to the destination subjected to the commanded outputs. As 
reported in the literature, the Gaussian processes model is a 
supervised probabilistic machine learning framework, which 
could be used for regression and classification applications 
[155]. Therefore, Petersen et al. [116] applied single-input 
variables with an ANN and a Gaussian process method in 
predicting ship propulsion efficiency performance. In another 
study, Li et al. [156] used a neural network in their modelling, 
analysis, and prediction of ship motion. Utilising another type 
of neural network, Perera et al. [157,158] was able to capture 
the compression and expansion of ship performance data. 
Despite the existence of several ANN studies in the ship and 
maritime field, they all failed to provide an adequate validation 
of the entire big data analysis process, as well as the regression 
models used in predicting ship performance and fuel 
consumption. In the study conducted by Pedersen et al. [114], a 
method was proposed for predicting a ship’s propulsive power, 
based on ANN and subject to the external factors affecting 
the ship resistance and propulsion. These different factors 
included ship speed, wind speed and direction relative to ship 
sailing, air and ocean temperature. Based on the hindcast 
approach, the built model was trained to estimate a ship’s 

propulsive power using input 
data from three different sources, 
including onboard measurements, 
noon reports, and sea state and 
weather conditions. The authors 
compiled the data set from 323 
different noon report samples. 
As stated in their methodology, 
Pedersen et al. [114] only set 5 
and 20 hidden layers as the two 
extremes to train the model. As 
a result, a 7% accuracy level was 
achieved when using the ANN 
model from noon report data in 
estimating ship fuel consumption. 
Because the model used ‘time’ as 
one of the input variables, it was 
suggested that the trend line of 
ship fuel consumption could be 
identified over time. 

In another study, a model 
was constructed by Du et al. 
[159,160] to predict a ship’s 
propulsive power. The proposed 
model was able to capture the 
synergetic effects of the various 

Fig.  5. (a) – ANN structure for predicting fuel consumption of a ship with 7 input data; (b) - Relationships between 
actual and predicted fuel consumption using ANN model; and (c) - multiple regression model [117]
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independent factors affecting ship fuel efficiency. The authors 
also proposed an ANN-based framework for managing ship 
fuel consumption which included a two-step procedure. The 
process began with the estimation of the ship engine rotation 
speed and then the engine power was subjected to the obtained 
speed. The calculation of ship fuel consumption was based 
on a set of estimated parameters. Besides, there are several 
required variables for the ANN model, such as ship speed, 
displacement tonnage, wind force, wind wave height, swell 
height, sea current factor and ship trim [161,162]. Samples 
of noon reports were collected from 3 different ships, totally 
121, 160 and 153 reports, respectively. As a result, the authors 
concluded that a simple single hidden layer ANN model 
had the best fit performance among other tested models. In 
another study, Rudzki et al. [163] developed a two-criteria 
optimisation algorithm, including both the objective function 
and the set of acceptable solutions, allowing the rational 
management of a ship’s fuel consumption and navigation 
time on the basis of the combination ANN and MATLAB 
package. As a result, they presented the relationship between 
engine speed and fuel consumption, allowing vessel owners 
to find the lowest possible operating costs.

As a subject of study, researchers have yet to fully 
investigate the use of ANN models in predicting ship speed 
under varying operating conditions. Without the presence 
of propulsive force, variable speed towing tank experiments 
could be utilised in estimating the amount of power needed 
to propel the ship hull. In the analysis of ANN models, the 
authors have examined those models which take into account 
the ship resistance or power and their main determinants. In a 
study by Couser et al. [164], they examined the appropriateness 
of using ANN for predicting ship resistance compared to 
conventional statistical methods. In their experiments, the 
researchers utilised the ANN network as an interpolation 
strategy in predicting ship residual resistance in various 
types of catamaran. It was observed that results from ANN 
models met the accuracy threshold to be applied when making 
preliminary estimates of ship resistance. In particular, the 
building of the ANN model was based on a single hidden 
layer and 15 neurons comprised a hidden layer. The authors 
arrived at two main conclusions: (i) the added hidden layers 
did not yield any additional benefits in terms of improving 
model accuracy and only increased the model complexity 
and training time; (ii) the availability of specific computer-
aided software allowed for the fast training and running 
of the ANN model in solving the ship resistance problems, 
relative to traditional statistical techniques.

Using an ANN model, Grabowska et al. [165] followed a 
similar strategy in their research on ship resistance prediction.  
In their experiment, the authors applied the parameters 
from seven available offshore marine vessels to the model 
parameters obtained from the test results carried out in a 
towing tank (i.e. a ship model basin used to conduct physical 
and hydrodynamic tests on ship models). They also compared 
seven different training algorithms with different hidden 
layer configurations, to evaluate their performance and 
identify possible effects of network architecture on the model 

outcomes. As a result, the Quick Propagation algorithm was 
selected for additional examination due to the best potential 
for favourable results, in terms of the correlation between 
target and output values (i.e. correlation coefficient R2 and 
absolute validation error). To determine the optimal network 
design architecture, several cases used 4 to 24 neurons in a 
hidden layer because the 24-neuron configuration gave the 
lowest absolute validation error. In this methodology, the 
study set the required input and output layers according 
to the input data dimensionality (i.e. the number of input 
variables in a dataset) and the required output values. Hence, 
the authors were able to select the number of hidden layer 
neurons from the geometric mean values obtained from the 
formula provided by Bishop [166]. Through the automated 
network architecture design, 24 neurons were identified as 
the optimal number delivering the highest level of accuracy. 
In brief, the authors concluded a satisfactory level of accuracy 
obtained from the constructed network compared to the 
model test results. However, additional studies on the network 
architecture are warranted that could offer a potential 
improvement on the model result. In a different experiment, 
Mason et al. [167] tested ANN model configurations using 
the data obtained from the original towing tank tests that 
had been previously conducted using the method proposed 
by Holtrop et al. [168]. In the initial test network design 
configuration, the number of layers was limited to three: 
the input, hidden and output layer. Utilising a quasi-Newton 
method, the training runs were set to 50,000 iterations. To 
lower the potential model errors, 10 retrains were conducted 
for each tested neural network topology, including 4 inputs, 
4 neuron-hidden layers combined with 1 output to 4 inputs, 
17 neuron-hidden layers and 1 output. The authors confirmed 
the effectiveness of the feedforward ANN used in fitting 
an extra data set containing a fair degree of random and 
meaningless information. 

Consequently, a proposed model containing two hidden 
layers might be more optimal than one, as depicted in Fig. 
6a [169]. Le et al. [169] presented the method of designing a 
multilayer perceptron artificial neural network (MLP-ANN) 
and used MLP-ANN to predict ship fuel consumption. They 
employed data from 100–143 container ships, while sailing 
time, speed, cargo weight, and capacity were considered as 
input parameters. As a result, they indicated that MLP-ANN 
could be used to predict the container ship fuel consumption 
by fitting lines very close to the actual results, as plotted in 
Fig. 6b. In another study, Ortigosa et al. [170,171] proposed an 
ANN model to predict two different ship resistance variables. 
The authors applied the multilayer perceptron (MLP) in 
training both synthetically generated and experimental 
datasets to estimate the different coefficients, including 
form and wave coefficients subjected to ship hull geometry 
coefficients and the Froude number. Based on the outlined 
methodology, an ANN-based empirical model was designed 
and tested using data produced by the Holtrop and Mennen 
method [168]. The model aimed to deliver an estimation 
of the components directly related to the ship resistance. 
In this case, the authors tested the proposed model using 
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MLP containing a sigmoid hidden layer and two linear 
output layers. Subsequently, the quasi-Newton method with 
Broyden–Fletcher–Goldfarb–Shanno train direction and 
Brent optimal train rate (as proposed in Bishop [166]) were 
utilised in training the constructed algorithm. The model 
was tested with a different number of hidden layer network 
configurations. In the process, the authors selected the 
network design that achieved the best optimal generalisation 
and validation errors. As a result, an ANN network model 
containing 5 inputs, 9 hidden layer neurons and 2 outputs 
was selected as the best configuration. 

Comparing the results 
obtained from the selected ANN 
model to those produced by the 
Holtrop and Mennen method, 
there were overall improvements, 
in terms of model performance 
over the whole dataset. In 
reviewing the available literature 
on the application of ANN in 
predicting ship fuel consumption 
and hull resistance, several 
conclusions were reached: 

(i) Input data used in training 
the model to predict ship fuel 
consumption were based on data 
extracted from actual ship logs, 
also known as noon reports;

(ii) Most studies relied 
on design data (geometric 
parameters of ship hull design) or 
experimental data obtained from 
tank tests as input variables for 
modelling ship resistance;

(iii) There needs to be more 
information on measurement 
methods and the types of 
propellers used in marine 
driveline systems. The bulk of 
available references concerning 
the application of ANNs were 
found in Bishop [166]. Regarding 
the strategy in the present 
research, a detailed experiment 
was proposed for planning and 
building sufficient ANN models 
to estimate ship fuel consumption 
and desired speed. The specific 
experiment was tested using 
various commanded outputs 
of the marine vessel driveline 
system while being subjected 
to a range of different off-shore 
environmental conditions. 
However, the collected data 
from the shipping company was 

limited, leading to difficulties in predicting to a high accuracy 
by using ANN. These limitations could be overcome by the 
integration of ANN with other algorithms, such as expert 
knowledge [172], the Cognitive Reliability and Error Analysis 
Method [173], or an Adaptive Neuro-Fuzzy Inference System 
combined with fuzzy logic theory [174]. In general, the use 
of ANN for predicting ship fuel consumption is summarised 
in Table 2.

Fig.  6. (a) – ANN model with 2 hidden layers; (b) - Actual and estimated fuel consumption [169]
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The ANN model is found to be cheap in computation; 
however, it does not seem to have any rule for selecting the 
feature variables or avoiding the overfitting cases in the 
training process. For this reason, Wang et al. [185] developed 
a new model to describe the fuel consumption of a specific 
ship, in relationship to surrounding environments and ship 
states. Indeed, they used the LASSO regression algorithm to 
implement the variable selection of feature variables, such as 
wind speed and wave height, air pressure and wind force, cargo 
weight and draft etc., with the aim of evaluating the ship fuel 
consumption, as illustrated in Fig. 7a. More importantly, they 
compared the performance of the proposed LASSO model 
with others like ANN, SVR, and GP in predicting the ship 
fuel consumption. As a result, the developed LASSO model 
outperformed the others, as depicted in Fig. 7b. Hu et al. 
[180] employed the back-propagation neural network (BPNN) 
and Gaussian process regression (GPR) techniques for the 
prediction of the fuel consumption of a ship. They found that 
the two above-mentioned techniques could be used to predict 
the ship’s fuel consumption with high accuracy, especially 

with the consideration of the effects of marine environmental 
factors. As a result, BPNN (T = 14.7 s) was found to provide 

shorter runtime than GPR (T = 2236.4 
s), while GPR (R2 = 0.9887) offers higher 
accuracy than BPNN (R2 = 0.9817).

Big data is well-known as an emerging 
tool in maritime and intelligent transport 
applications [186]–[188]. Indeed, ship 
fuel consumption is associated with a 
large number of ship parameters such as 
navigational environment [189], sailing 
state [112], ship loading [190], hull 
fouling [191], and applied antifouling 
coating [192], showing that the related 
data are diverse, complex and huge [193]. 
For these reasons, the application of big 
data could provide a foundation for the 
establishment of a model for ship fuel 
consumption [58,197]. In recent years, 
the use of big data combined with ANN 
and machine learning techniques was 
considered as a feasible method to 
predict the ship fuel consumption more 
exactly [58,198]. As illustrated in Fig. 
8, the following four steps are included 
in the big data analysis process for ship 
performance and operational efficiency. 
They include (1) data denoising, (2) data 
clustering, (3) data compression and 
expansion, and (4) regression analysis 
using a neural network [196].

The input data required for big data 
analysis include a range of time series 
data, as well as equipment, navigation, 
and weather-related data. Upon collection 
of these data, the data cleaning step, also 
known as data denoising, is essential in 

eliminating unnecessary noise, bias, and outliers found in 
the raw data [197]. Within this step, any abnormalities are 
extracted from the dataset, once detected. Such types of data 
are identified as any unusually large differences between two 
adjacent values or any detectable deviation outside of the 
normal value range of input or output variables that can be 
confirmed using the domain knowledge about the variables 
[198]. In the present research, the authors utilised a smoothing 
algorithm to clean and refine the raw dataset by minimising 
any discernibly large differences between two neighbouring 
data values. Data denoising is then followed by the data 
clustering step, in which the post-cleaning data are categorised 
based on the high-frequency operation regions using the 
Gaussian mixture model [199]. After this initial clustering 
step, an additional silhouette analysis is conducted to validate 
the prior classification of data according to the operation 
regions. The resulting number of clusters is then modified 
several times, until the highest possible estimated silhouette 
value is attained. The final number of clusters is identified 
that corresponds to the highest possible silhouette value. In 

Parameters of concern Data sources Method Accuracy Reference

Engine load, operating 
parameters, weather conditions

- ANN 0.9055 [175]

Weather and current conditions, 
engine speed

Voyage data - [176]

Engine load, operating 
parameters, weather conditions

AMS 0.9709–0.9936 [177]

Weather and current conditions, 
engine speed

Route software - [178]

Weather and current conditions LAROS system 0.9870 [179]

Weather and current conditions ACMS, AIS, and 
weather forecast

0.9960 [103]

Weather and current conditions, 
engine speed

- BPNN R2 = 0.9817 [180]

Weather and current conditions, 
engine speed

Ship monitoring 
system

R2 = 0.9843 [101]

Weather and current conditions, 
engine speed

- MLPN R2 = 0.8340 [151]

Weather and current conditions, 
rudder angle

Sensors Relative error = 
0.02

[181]

Engine speed, shaft power Sensors LSTM RMSE = 2.714 [182]

Weather and current conditions - - [161]

Weather and current conditions, 
engine speed

Multisource 
sensors

- [51]

Weather and current conditions, 
engine speed

ADLM and 
CMEMS

DNN R2 = 0.8940 [111]

Weather and current conditions, 
engine speed

Shipping 
company, and 
CMEMS

0.95 [183]

Weather and current conditions, 
engine speed

Ship monitoring 
system

DBN MRE = 0.3539 [184]

Table 2. Various models based on neural network for prediction of ship fuel consumption
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the next phase, compression and expansion processes are 
performed on the clustered data in order to get them ready for 
transmission and storage. To ensure minimal data loss, mean 

squared errors (MSE) are used as a tool to compare the quality 
of the pre and post-compression datasets. Thus, the MSE 
between these two datasets is checked against the user-defined 

Fig.  7. (a) - Framework for ship fuel consumption based on LASSO regression algorithm; (b) – Comparison of model performance between LASSO and ANN, 
SVR, and GP [185]

(a)

(b)
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MSE. Once the data compression and restoration ratios are 
examined and the conditions for specific user-defined values 
are met, the data pre-processing part is complete. Next, the 
regression analysis is performed using ANN to predict ship 
fuel consumption. In the process of validating the results, 
the parameters of the ANN model are modified until the 
calculated value from the regression function exceeds the 
user-defined value. The outcome of the analysis provides 
the regression model for estimating ship fuel consumption. 

In recent years, the internet of things (IoT) technology 
has been applied to the maritime industry with the of 
improving energy management, ship management, and 
environmental management [200]. With the integration of 

IoT technology, the introduction of 
remote-control systems has allowed 
for the monitoring of a new generation 
of smart ships from command centres 
located on land. With recent advances 
in IoT technology, the availability of 
Wi-Fi-enabled sensors mounted on 
ship equipment and machinery has 
provided access and continuous 
collection of a ship’s navigational 
information and operational data 
[201], [202]. Once collected, this large 
amount of time-series data must be 
processed and analysed to reveal 
insights on ship performance. A big 
data framework was constructed 
by Perera et al. [203], which can be 
used in the pre-processing (e.g. error 
detection, classification, and data 
compression) and post-processing 
(e.g. data expansion, integration 
verification, and data regeneration) 
of large volumes of time-series 
data. In their study, the authors 
utilised a simple regression model 
to explain the relationship between 
the different parameters, despite the 
lack of verification of the accuracy 
of fuel consumption data. Because 
of the high number of dimensions 
and interactions among variables in 
most big data analysis, it is important 
to ensure the accuracy of the final 
regression model. 

CONCLUSIONS 
AND FUTURE 

RECOMMENDATIONS
In the present study, a broader 

literature review has been carried out 
on developing a prediction model for 
fuel consumption using ANN. The 

knowledge gap in the field of research has been addressed. 
The salient findings of the present review are given below:
1. Most of the present research focuses on machine learning 

methods to predict fuel consumption with a significant 
objective of saving energy and reducing emissions.

2. WBMs are suited for conditions with fewer data to 
process i.e. insufficient voyage data. The workload of 
the model can be increased by augmenting data sets. So, 
WBMs can be suited to conditions where the prediction 
accuracy is not an important factor and voyage data is 
limited.

3. On the other hand, BBMs can be used effectively and 
with high accuracy by combining machine learning and 

Fig.  8. Big data analysis process for managing ship fuel consumption [196]
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statistics. ANN is one of the most commonly used and 
accurate methods for BBM. Even though BBMs require 
highly accurate data, they are preferred for ship fuel 
prediction applications owing to their reliability.

4. The application of ANN models in predicting ship fuel 
consumption provides key advantages, including their 
generalisation and extrapolation capability. From an 
industrial point of view, the GA-based GBM can be 
integrated as part of a ship’s energy efficiency programs 
to optimise ship fuel consumption and reduce GHG 
emissions, as a result of its better predictive capability. 

5. The ANN model is cheap, in computation terms; however, 
it does not have any rule for selecting the feature variables, 
as well as avoiding the overfitting cases in the training 
process. As the data collected from the shipping company, 
for model development, was limited, the accuracy of the 
prediction model by ANN was affected to a greater extent. 
These limitations could be overcome by the integration of 
ANN with other algorithms, such as expert knowledge.

Based on the current status of research into fuel 
consumption models, the following directions for future 
research can be proposed:
1. The various alternate sources of marine fuels can be 

explored. The predictive modelling of data obtained from 
using alternate fuels can be analysed.

2. The future prediction models may consider additional 
non-navigational field parameters. Some parameters, 
such as berth allocation, inventory and market trends, 
can be added while modelling the system.

3. The fuel consumption models may be integrated with 
energy efficiency optimisation methods for better 
results. The developed models can also be used as tools 
for evaluating the marine vessel fuel consumption study 
by combining all the factors of cruising.

NOMENCLATURE

ANN Artificial Neural Networks

GHG Greenhouse gas

IMO International Maritime Organisation

LSTM Long Short Term Memory

BP Back Propagation

LASSO Least Absolute Shrinkage and Selection Operator

SEEMP Ship Energy Efficiency Management Plan

EEDI Energy Efficiency Design Index

SOx Sulphur oxide

NOx Nitrous oxide

PR Polynomial regression

SVM Support vector machine

DSS Decision support system

WBMs White-box models

BBMs Black-box models

GBMs Grey-box models

SPEPs Sequential parameter estimation procedures

GA-based GBM Genetic algorithm-based grey-box model

XDi Decision-making variables

XNj Uncontrollable input variables

WNN Wavelet neural network

MLP Multilayer perceptron

MLP-ANN Multilayer perceptron artificial neural network

GPR Gaussian process regression

BPNN Backpropagation neural network

GMM Gaussian mixture model

MSE Mean squared errors

IoT Internet of things
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