PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mapping hotspots and coldspots of soil erosion along the watershed running into Tomini Bay

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The extensive use of geospatial information technology in predicting erosion rates has been considerable. However, previous studies have not considered aspects of landscape connectivity based on spatial dependence in mapping erosion-prone zones. This research eliminates this weakness by using the GEE-R-GIS framework. Specifically, this experiment aims to 1) assess spatiotemporal variations in soil erosion rates in 2000 and 2020 along watersheds in the Tomini Bay region, Indonesia, 2) map soil erosion hotspots and coldspots using spatial autocorrelation for rehabilitation priority areas watershed. The findings show that 1) the spatiotemporal of soil erosion in 2000 and 2020 is primarily consistent in the central part of Central Sulawesi Province; others are spread in the western mountainous area of the study region, stretching from north to south; 2) there is a difference in the area of hotspot and coldspot between 2000 and 2020. Hotspots are mostly spatially aggregated in the southern and western regions of the research area, while coldspots are concentrated in the northern region. In 2000, hotspots covered 11.13% of the study area, with a significance class of <0.05. Coldspots occupied 28.42% of the study region with a significance class of <0.05. In 2020, the area of hotspots decreased to 9.98%, and the soil erosion coldspots increased slightly to 28.68%. Hotspots and coldspots information can be treated as a reference for spatial priority in watershed environmental rehabilitation planning.
Wydawca
Rocznik
Tom
Strony
65--73
Opis fizyczny
Bibliogr. 63 poz., mapy, tab., wykr.
Twórcy
  • Universitas Negeri Gorontalo, Doctoral Study Program in Environmental Science, Jend. Sudirman Street, 96128, Gorontalo, Indonesia
  • Universitas Negeri Gorontalo, Doctoral Study Program in Environmental Science, Jend. Sudirman Street, 96128, Gorontalo, Indonesia
autor
  • Universitas Negeri Gorontalo, Study Program of Geography Education, Prof. Dr. Ing. B. J. Habibie Street, 96119, Gorontalo, Indonesia
  • Universitas Negeri Gorontalo, Doctoral Study Program in Environmental Science, Jend. Sudirman Street, 96128, Gorontalo, Indonesia
Bibliografia
  • Adem Esmail, B. et al. (2024) “Mapping and analyzing ecosystem services hotspots and coldspots for sustainable spatial planning in the Greater Asmara Area, Eritrea,” Environmental Management, 75, pp. 551–567. Available at: https://doi.org/10.1007/s00267-024-02078-x.
  • Adimiharja, A. (2007) Teknologi dan strategi konservasi tanah dalam kerangka revitalisasi pertanian, pengembangan inovasi pertanian [Soil conservation technologies and strategies within the framework of agricultural revitalization]. Bogor: Badan Penelitian dan Pengembangan Pertanian Departemen Pertanian. Available at: https://kikp-pertanian.id/bpsitanahpupuk/uploaded_files/temporary/DigitalCollection/ZWFhMjE1ZjgxNWQ4YjU0YTM1OWYxNDkwZjM0YzNhYTY2YTk5NzQ5OQ==.pdf (Accessed: October 18, 2024).
  • Alebachew, E.D. et al. (2025) “Soil erosion estimation and risk assessment based on RUSLE in Google Earth Engine (GEE) in Turkiye,” Annals of GIS, 31(1), pp. 123–141. Available at: https://doi.org/10.1080/19475683.2025.2452262.
  • Almagro, A. et al. (2019) “Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions,” International Soil and Water Conservation Research, 7 (4), pp. 325–334. Available at: https://doi.org/10.1016/j.iswcr.2019.08.005.
  • Ambarwulan, W. et al. (2021) “Using Geographic Information Systems and the Analytical Hierarchy Process for delineating erosion-induced land degradation in the Middle Citarum Sub-Watershed, Indonesia,” Frontiers in Environmental Science, 9, 710570. Available at: https://doi.org/10.3389/fenvs.2021.710570.
  • Anselin, L. (1995) “Local Indicators of Spatial Association – LISA,” Geographical Analysis, 27(2), pp. 93–115. Available at: https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.
  • Babu, R., Dhyani, B.L. and Kumar, N. (2004) “Assessment of erodibility status and refined iso-erodent map of India,” Indian Journal of Soil Conservation, 32(2), pp. 171–177. Available at: https://eurekamag.com/research/004/049/004049045.php (Accessed: October 15, 2024).
  • Beck, H.E. et al. (2018) “Present and future Köppen–Geiger climate classification maps at 1-km resolution,” Scientific Data, 5(1), 180214. Available at: https://doi.org/10.1038/sdata.2018.214.
  • Benavidez, R. et al. (2018) “A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates,” Hydrology and Earth System Sciences, 22(11), pp. 6059–6086. Available at: https://doi.org/10.5194/hess-22-6059-2018.
  • Borrelli, P. et al. (2020) “Land use and climate change impacts on global soil erosion by water (2015–2070),” Proceedings of the National Academy of Sciences, 117(36), pp. 21994–22001. Available at: https://doi.org/10.1073/pnas.2001403117.
  • Borrelli, P. et al. (2021) “Soil erosion modelling: A global review and statistical analysis,” Science of The Total Environment, 780, 146494. Available at: https://doi.org/10.1016/j.scitotenv.2021.146494.
  • Bouguerra, H. et al. (2017) “Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the Revised Universal Soil Loss Equation through GIS,” Journal of Water and Land Development, 32, pp. 13–23. Available at: https://doi.org/10.1515/jwld-2017-0002.
  • BPS (2023a) Provinsi Gorontalo dalam angka 2023 [Gorontalo Province in figures]. Gorontalo: BPS Provinsi Gorontalo. Available at: https://gorontalo.bps.go.id/id/publication/2023/02/28/6c460a02c67055389cdee0bc/provinsi-gorontalo-dalam-angka-2023.html (Accessed: October 20, 2024).
  • BPS (2023b) Provinsi Sulawesi Tengah Dalam Angka 2023 [Sulawesi Tengah Province in figures]. Palu: Badan Pusat Statistik Provinsi Sulawesi Tengah. Available at: https://sulteng.bps.go.id/id/publication/2023/02/28/6eadd334118ff89b9957b958/provinsi-sulawesi-tengah-dalam-angka-2023.html (Accessed: October 20, 2024).
  • Browning, T.N. and Sawyer, D.E. (2021) “Vulnerability to watershed erosion and coastal deposition in the tropics,” Scientific Reports, 11(1), 885. Available at: https://doi.org/10.1038/s41598-020-79402-y.
  • Colman, C.B. et al. (2018) “Different approaches to estimate the sediment yield in a tropical watershed,” Revista Brasileira de Recursos Hídricos, 23, e47. Available at: https://doi.org/10.1590/2318-0331.231820170178.
  • Cunha, J. et al. (2023) “Defining hotspots and coldspots of regulating and maintenance ecosystem services is key to effective marine management – An assessment of a coastal-open sea gradient, Portugal,” Ocean & Coastal Management, 245, 106876. Available at: https://doi.org/10.1016/j.ocecoaman.2023.106876.
  • David, W.P. (1988) “Soil and water conservation planning: Policy issues and recommendations,” Journal of Philippine Development, 15(1), pp. 47–84. Available at: https://core.ac.uk/download/pdf/6506014.pdf (Accessed: October 15, 2024).
  • Deresse, T., Ereso, T. and Geremu, E. (2023) “Impacts of soil erosion on ecosystem provisioning services: Oddo Shakiso District, Guji Zone, Oromia, Ethiopia,” Cogent Arts & Humanities, 10(2), 2286085. Available at: https://doi.org/10.1080/23311983.2023.2286085.
  • Dong, Y.-H. et al. (2023) “Spatial autocorrelation and spatial heterogeneity of underground parking space development in Chinese megacities based on multisource open data,” Applied Geography, 153, 102897. Available at: https://doi.org/10.1016/j.apgeog.2023.102897.
  • Duressa, A.A. et al. (2024) “Identification of soil erosion-prone areas for effective mitigation measures using a combined approach of morphometric analysis and geographical information system,” Results in Engineering, 21, 101712. Available at: https://doi.org/10.1016/j.rineng.2023.101712.
  • Durigon, V.L. et al. (2014) “NDVI time series for monitoring RUSLE cover management factor in a tropical watershed,” International Journal of Remote Sensing, 35(2), pp. 441–453. Available at: https://doi.org/10.1080/01431161.2013.871081.
  • Elnashar, A. et al. (2021) “Soil erosion assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework,” Science of The Total Environment, 793, 148466. Available at: https://doi.org/10.1016/j.scitotenv.2021.148466.
  • Farr, T.G. et al. (2007) “The Shuttle Radar Topography Mission,” Reviews of Geophysics, 45(2), RG2004. Available at: https://doi.org/10.1029/2005RG000183.
  • Fentaw, A.E. and Abegaz, A. (2024) “Soil erosion assessment and identification of erosion hotspot areas in the upper Tekeze Basin, Northern Ethiopia,” Heliyon, 10(12), e32880. Available at: https://doi.org/10.1016/j.heliyon.2024.e32880.
  • Funk, C. et al. (2015) “The climate hazards infrared precipitation with stations – A new environmental record for monitoring extremes,” Scientific Data, 2(1), 150066. Available at: https://doi.org/10.1038/sdata.2015.66.
  • Gedamu, W.T., Plank-Wiedenbeck, U. and Wodajo, B.T. (2024) “A spatial autocorrelation analysis of road traffic crash by severity using Moran’s I spatial statistics: A comparative study of Addis Ababa and Berlin cities,” Accident Analysis & Prevention, 200, 107535. Available at: https://doi.org/10.1016/j.aap.2024.107535.
  • Godif, G. and Manjunatha, B.R. (2022) “Prioritizing sub-watersheds for soil and water conservation via morphometric analysis and the weighted sum approach: A case study of the Geba River basin in Tigray, Ethiopia,” Heliyon, 8(12), e12261. Available at: https://doi.org/10.1016/j.heliyon.2022.e12261.
  • Gorelick, N. et al. (2017) “Google Earth Engine: Planetary-scale geospatial analysis for everyone,” Remote Sensing of Environment, 202(1), pp. 18–27. Available at: https://doi.org/10.1016/j.rse.2017.06.031.
  • Haining, R.P. (2001) “Spatial autocorrelation,” in International Encyclopedia of the Social & Behavioral Sciences. Amsterdam: Elsevier, pp. 14763–14768. Available at: https://doi.org/10.1016/B0-08-043076-7/02511-0.
  • Halder, S. et al. (2024) “Critical watershed prioritization through multi-criteria decision-making techniques and Geographical Information System integration for watershed management,” Sustainability, 16(8), 3467. Available at: https://doi.org/10.3390/su16083467.
  • Hengl, T. (2018) “Soil texture classes (USDA system) for 6 soil depths (0, 10, 30, 60, 100 and 200 cm) at 250 m,” Zenodo. Available at: https://doi.org/10.5281/zenodo.2525817.
  • Islam, F. et al. (2022) “Modelling and mapping of soil erosion susceptibility of Murree, Sub-Himalayas using GIS and RS-based models,” Applied Sciences, 12(23), 12211. Available at: https://doi.org/10.3390/app122312211.
  • Jain, M.K. and Das, D. (2010) “Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and Remote sensing,” Water Resources Management, 24(10), pp. 2091–2112. Available at: https://doi.org/10.1007/s11269-009-9540-0.
  • Jodhani, K.H. et al. (2023) “Soil erosion assessment by RUSLE, Google Earth Engine, and geospatial techniques over Rel River watershed, Gujarat, India,” Water Conservation Science and Engineering, 8(1), 49. Available at: https://doi.org/10.1007/s41101-023-00223-x.
  • KLHK (2022) Laporan Kinerja 2022 Direktorat Jenderal Pengelolaan DAS dan Rehabilitasi Hutan [2022 Performance Report of the Directorate General of Watershed Management and Forest Rehabilitation]. Jakarta: Kementerian Lingkungan Hidup dan Kehutanan.
  • KLHK (2024) Peta Interaktif Sigap Kementerian LHK [Sigap Interactive Map of the Ministry of Environment and Forestry]. Jakarta: Kementerian Lingkungan Hidup dan Kehutanan. Available at: https://geoportal.menlhk.go.id/portal/apps/webappviewer/index.html? (Accessed: October 16, 2024).
  • Legowo, S.W.D. (2007) “Pendugaan erosi dan sedimentasi dengan Menggunakan Model GEOWEPP studi kasus DAS Limboto Propinsi Gorontalo [Estimation of erosion and sedimentation using the GEOWEPP model, case study of the Limboto Watershed, Gorontalo Province],” Media Komunikasi Teknik Sipil, 15(1).
  • Li, Y. et al. (2017) “Mapping the hotspots and coldspots of ecosystem services in conservation priority setting,” Journal of Geographical Sciences, 27(6), pp. 681–696. Available at: https://doi.org/10.1007/s11442-017-1400-x.
  • Lin, J. (2023) “Comparison of Moran’s I and Geary’s c in Multivariate Spatial Pattern Analysis,” Geographical Analysis, 55(4), pp. 685– 702. Available at: https://doi.org/10.1111/gean.12355.
  • Liu, T. et al. (2024) “Identification of hotspots and cold-spots of groundwater potential using spatial statistics,” Journal of Hydrology: Regional Studies, 56, 101977. Available at: https://doi.org/10.1016/j.ejrh.2024.101977.
  • Loba, A. et al. (2021) “Tracing erosion rates in loess landscape of the Trzebnica Hills (Poland) over time using fallout and cosmogenic nuclides,” Journal of Soils and Sediments, 21(8), pp. 2952–2968. Available at: https://doi.org/10.1007/s11368-021-02996-x.
  • Mirzabaev, A., Strokov, A. and Krasilnikov, P. (2023) “The impact of land degradation on agricultural profits and implications for poverty reduction in Central Asia,” Land Use Policy, 126, 106530. Available at: https://doi.org/10.1016/j.landusepol.2022.106530.
  • Moran, P. (1950) “Notes on continuous stochastic phenomena,” Biometrika, 37(1/2), pp. 17–23. Available at: http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/moran_paper.pdf (Accessed: October 19, 2024).
  • Nahib, I. et al. (2024) “Analysis of factors influencing spatial distribution of soil erosion under diverse subwatershed based on geospatial perspective: A case study at Citarum Watershed, West Java, Indonesia,” Scientifica, 1, 251691. Available at: https://doi.org/10.1155/2024/7251691.
  • Olii, M.R. et al. (2023) “GIS-based analytic hierarchy process (AHP) for soil erosion-prone areas mapping in the Bone Watershed, Gorontalo, Indonesia,” Environmental Earth Sciences, 82(9), 225. Available at: https://doi.org/10.1007/s12665-023-10913-3.
  • Pal, S.C. et al. (2023) “Earthquake hotspot and coldspot: Where, why and how?,” Geosystems and Geoenvironment, 2(1), 100130. Available at: https://doi.org/10.1016/j.geogeo.2022.100130.
  • Potapov, P. et al. (2022) “The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: First results,” Frontiers in Remote Sensing, 3, 856903. Available at: https://doi.org/10.3389/frsen.2022.856903.
  • Pusparini, W. et al. (2023) “A bolder conservation future for Indonesia by prioritising biodiversity, carbon and unique ecosystems in Sulawesi,” Scientific Reports, 13(1), 842. Available at: https://doi.org/10.1038/s41598-022-21536-2.
  • Renard, K.G. et al. (1991) “RUSLE: Revised universal soil loss equation,” Journal of Soil and Water Conservation, 46(1), pp. 30–33. Available at: https://www.tucson.ars.ag.gov/unit/publications/pdffiles/775.pdf (Accessed: October 15, 2024).
  • Sartori, M. et al. (2024) “Remaining loyal to our soil: A prospective integrated assessment of soil erosion on global food security,” Ecological Economics, 219, 108103. Available at: https://doi.org/10.1016/j.ecolecon.2023.108103.
  • Schröter, M. and Remme, R.P. (2016) “Spatial prioritisation for conserving ecosystem services: comparing hotspots with heuristic optimisation,” Landscape Ecology, 31(2), pp. 431–450. Available at: https://doi.org/10.1007/s10980-015-0258-5.
  • Sud, A. et al. (2024) “Integrating RUSLE model with cloud-based geospatial analysis: A Google Earth Engine approach for soil erosion assessment in the Satluj Watershed,” Water, 16(8), 1073. Available at: https://doi.org/10.3390/w16081073.
  • Supriatna, J. et al. (2020) “Deforestation on the Indonesian island of Sulawesi and the loss of primate habitat,” Global Ecology and Conservation, 24, e01205. Available at: https://doi.org/10.1016/j.gecco.2020.e01205.
  • Tallis, H. et al. (2021) “Prioritizing actions: Spatial action maps for conservation,” Annals of the New York Academy of Sciences, 1505(1), pp. 118–141. Available at: https://doi.org/10.1111/nyas.14651.
  • Tamiminia, H. et al. (2020) “Google Earth Engine for geo-big data applications: A meta-analysis and systematic review,” ISPRS Journal of Photogrammetry and Remote Sensing, 164, pp. 152–170. Available at: https://doi.org/10.1016/j.isprsjprs.2020.04.001.
  • Tirkey, A.S., Ghosh, M. and Pandey, A.C. (2016) “Soil erosion assessment for developing suitable sites for artificial recharge of groundwater in drought prone region of Jharkhand state using geospatial techniques,” Arabian Journal of Geosciences, 9(5), 362. Available at: https://doi.org/10.1007/s12517-016-2391-0.
  • UNCCD (2018) “Preliminary analysis – Strategic objective 1: To improve the condition of affected ecosystems, combat desertification/land degradation, promote sustainable land management and contribute to land degradation neutrality,” in PRAIS4 Reporting Manual. Available at: https://prais4-reporting-manual.unccd.int/en/latest/SO1.html (Accessed: October 14, 2024).
  • USGS (2024) “Landsat collection 2 Tier 1 Level 2 Annual NDVI Composite,” Earth Engine data catalog. Available at: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_ANNUAL_NDVI?hl=pl (Accessed: October 14, 2024).
  • Wang, R. et al. (2023) “Mechanism of nitrogen loss driven by soil and water erosion in water source areas,” Journal of Forestry Research, 34(6), pp. 1985–1995. Available at: https://doi.org/10.1007/s11676-023-01640-3.
  • Wischmeier, W.H. and Smith, D.D. (1978) Predicting rainfall erosion losses: A guide to conservation planning. Washington, DC: USDA. Available at: https://www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/AH_537%20Predicting%20Rainfall%20Soil%20Losses.pdf (Accessed: October 16, 2024).
  • Wuepper, D., Borrelli, P. and Finger, R. (2019) “Countries and the global rate of soil erosion,” Nature Sustainability, 3(1), pp. 51–55. Available at: https://doi.org/10.1038/s41893-019-0438-4.
  • Yousuf, A. et al. (2025) “Soil erosion assessment and watershed prioritization using GIS-based RUSLE in lower Shivaliks of Northwest India,” Geology, Ecology, and Landscapes, pp. 1–18. Available at: https://doi.org/10.1080/24749508.2025.2450108.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dee5ab58-10d9-420d-90ec-29e6abf579ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.