PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of variable operational parameters on an aero engine labyrinth seals performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the accurate assessment of the amount of gas flowing through three types of aero-engine expander sealing. Structures consisting of straight-through labyrinth seals – with one, two and three fins are considered. The study deploys two independent approaches. The first one focuses on the experimental research using high-precision test section with non-rotating labyrinth seals specimen connected to a high capacity vacuum installation. Experimentally tested seals are of actual size (model to engine scale is 1:1). High accuracy hot-wire anemometry probes, and orifice plate are deployed to evaluate the flow indicators accurately, allowing for comparison of different sealing structures. The second approach uses quasi-two-dimensional axissymmetric, steady-state Reynolds averaged Navier Stokes (RANS) computations to simulate the flow field. Various meshes and turbulence models were tested, presenting capabilities as well as limitations of specific computational approaches. The experimental and computational results were compared with literature data, showing a good agreement regarding overall trends, yet underlining some local discrepancies. This paper brings two significant findings. The 2D RANS methods tend to overestimate the leakage when compared with experimental results, and the difference is more significant for advanced arrangements. There is a notable difference between the performance of labyrinth seal with one fin and structure with two and three fins. In some operational areas, one-finned seal performs better than more advanced ones, reducing the leakage more effectively. This feature of one finned seal is not intuitive, as one would expect it to perform worse than a seal with two or three fins.
Słowa kluczowe
Rocznik
Tom
Strony
83--104
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Cranfield University, Cranfield, Bedfordshire, United Kingdom
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] Steinetz B.M., Hendricks R.C., Braun M.J.: Turbomachine Sealing and Secondary Flows. Part 1. Review of Sealing Performance, Customer, Engine Designer, and Research Issues. NASA/TM – 2004-211991/Part1, Glenn Research Centre, Cleveland 2004.
  • [2] Chupp R.E., Hendricks R.C., Lattime S.B., Steinetz B.M.: Sealing in Turbomachinery. NASA/TM – 2006-214341, Glenn Research Centre, Cleveland 2006.
  • [3] Stocker H.L.: Determining and Improving Labyrinth Seal Performance in Current and Advanced High Performance Gas Turbines: Flow Systems Group, Detroit Diesel Allison, Indianapolis 1978.
  • [4] Waschka W., Wittig S., Kim S.: Influence of high rotational speeds on the heat transfer and discharge coefficients in labyrinth seals. J. Turbomach. 114(1992), 2, 462–468.
  • [5] Paolillo R., Moore S., Cloud D., Glahn J.A.: Impact of rotational speed on the discharge characteristic of stepped labyrinth seals. In: Proc. GT2007 ASME Turbo Expo 2007: Power for Land, Sea and Air (2007), 1–8.
  • [6] Braun E., Dullenkopf K., Bauer H.-J.: Optimization of labyrinth seal performance combining experimental, numerical and data mining methods. In: Proc. ASME Turbo Expo 2012: Turbine Technical Conf. Expo: Vol. 4, Heat Transfer, Pts. A and B, 1847–1854, 2012.
  • [7] Rulik S., Wróblewski W., Fraczek D.: Metamodel-based optimization of the labyrinth seal. Arch. Mech. Eng. 64(2017), 1, 75–91.
  • [8] Wróblewski W., Dykas S., Bochon K., Rulik S.: Optimization of tip seal with honeycomb land in lp counter rotating gas turbine engine. Task Quart. 3(2010), 3, 189–207.
  • [9] Kang Y., Kim T.S., Kang S.Y., and Moon H.K.: Aerodynamic performance of stepped labyrinth seals for gas turbine applications. In: Proc.ASME Turbo Expo 2010: Power for Land, Sea and Air: Vol. 4: Heat Transfer, Pts. A and B, 1191–1199, 2010.
  • [10] ] Massini D., Facchini B., Micio M., Bianchini C., Ceccherini A., and Innocenti L.: Analysis of flat plate honeycomb seals aerodynamic losses: Effects of clearance. Energy Procedia, 45(2014), 502–511.
  • [11] Zimmermann H., Wolff K.H.: Air system correlations Part 1: Labyrinth seals. In: Proc. Int. Gas Turbine and Aeroengine Cong. Exhib., 1–8, 1998.
  • [12] Zimmermann H., Wolff K.H.: Comparison between empirical and numerical labyrinth flow correlations. In: Proc. ASME 1987 Int. Gas Turbine Conf. Exhib. Vol. 1, 1–6, 1987.
  • [13] Kearton W.J., Keh T.H., Snow E.W.: Leakage of air through labyrinth glands of staggered type – Discussion. Proc. Inst. Mech. Eng. (1952), 180–195.
  • [14] Weinberger T.: Einfluss geometrischer Labyrinth- und Honigwabenparameter auf das Durchfluss- und Wärmeübergangsverhalten von Labyrinthdichtungen: Experiment, Numerik und Data Mining. MSc dissertation, Karlsruher Institut für Technologie, Karlsruhe 2014.
  • [15] Kim T.S., Kang Y., Moon H.K.: Aerodynamic performance of double-sided labyrinth seals. In: Proc. Int. Symp. on Fluid Machinery and Fluid Mechanics, 2008, 377–382.
  • [16] Tipton D.L., Scott T.E., Vogel R.E.: Labyrinth Seal Analysis: Vol. 3, Analytical and Experimental Development of a Design Model for Labyrinth Seals. AFWAL-TR-85-2103: Vol. III, Allison Gas Turbine Division, Indianapolis 1986.
  • [17] Szymanski A., Dykas S., Majkut M., Strozik M.: The assessment of the calculation method for determining characteristics of one straight fin labyrinth seal. Trans. Inst. Fluid-Flow Mach. 134(2016), 89–107.
  • [18] Szymanski A., Dykas S., Wróblewski W., Majkut M., Strozik M.: Experimental and numerical study on the performance of the smooth-land labyrinth seal. J. Phys.: Conf. Ser. 760(2016), 1.
  • [19] Frączek D., Wróblewski W., Chmielniak T.: Influence of honeycomb rubbing on tip seal performance of turbine rotor. ASME J. Eng. Gas Turb. Power 139(2017), 1–13.
  • [20] Choi D.-C., Rhode D.L.: Development of a 2-D CFD approach for computing 3-D honeycomb labyrinth leakage. ASME J. Eng. Gas Turb. Power 126(2004), 794–802.
  • [21] Kaszowski P., Dzida M.: CFD analysis of fluid flow through the labyrinth seal. Trans. Inst. Fluid-Flow Mach. 130(2015), 71–82.
  • [22] Kong X., Liu G., Liu Y., and Zheng L.: Experimental testing for the influences of rotation and tip clearance on the labyrinth seal in a compressor stator wel l. Aerosp. Sci. Technol. 71(2017), 556–567.
  • [23] Lin Z., Wang X., Yuan X., Shibukawa N., Noguchi T.: Investigation and improvement of the staggered labyrinth seal. Chin. J. Mech. Eng.-En. 28(2015), 2, 402–408, .
  • [24] Tyacke J.C., Jefferson-Loveday R., Tucker P.G.: Application of LES to labyrinth seals. In: Proc. 20th AIAA Computational Fluid Dynamics Conf., 2011, 1–24.
  • [25] Tyacke J., Jefferson-Loveday R., Tucker P.G.: On the application of LES to seal geometries. Flow Turbul. Combust. 91(2013), 4, 827–848.
  • [26] CFX Tutorial, Chapter 9: Free Surface Flow Over a Bump.
  • [27] Georgiadis N. Yoder D.: Recalibration of the Shear Stress Transport Model to Improve Calculation of Shock Separated Flows. NASA/TM-2013-217851, Glenn Research Centre, Cleveland 2013.
  • [28] Menter F.R., Kuntz M., Langtry R.: Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 4(2003), 625–632.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dee49518-8c6b-4602-aa65-7bf2a9533cd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.